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Abstract. New gravity field models incorporate
GRACE data as the best available data source for the
low to medium wavelength but validation is difficult
since comparisons with existing GRACE models
will always be biased. Maybe the best independent
data set on a global scale is therefore the CHAMP
data. It is known that the accuracy of the CHAMP
solutions is approximately one order of magnitude
worse than the one of GRACE-only solutions. On the
other hand and considering e.g. the degree difference
RMS between PGM2007A and GGM02S, also dis-
crepencies between these models occur which cannot
solely be explained by numerical inaccuracies. Con-
sequently, it has been investigated if the CHAMP so-
lutions can serve as an indicator. This research shows
results of the evaluation of the preliminary gravity
field model PGM2007A with a CHAMP solution
derived from two years of kinematic orbits. The qual-
ity of the global CHAMP solutions is further im-
proved by a local refinement with Slepian functions
which can make better use of the information in ar-
eas of high data density, e.g. in high-latitude areas.
However, it is concluded that despite the data density
the poorer quality of the CHAMP data is preventing a
definite assessment of the quality of the PGM2007A.

Keywords. CHAMP, GRACE, energy balance ap-
proach, spherical harmonics, Slepian functions

1 Introduction

The evaluation of the preliminary gravity field model
PGM2007A with CHAMP data will focus on the
low to medium degree part of the spectrum due to
the restricted spatial and spectral resolution of the
CHAMP mission. It is a comparison between a
single satellite but independent solution and PGM-
2007A which contains besides GRACE also alti-
metric and terrestrial data. Three different data sets
will be considered in the comparison. Besides PGM-
2007A, the GRACE-only solution GGM02S pro-
vided by UTCSR (Tapley et al., 2005) and a two year
CHAMP-only solution (Weigelt, 2007) is used.

Before we start with the description of the data
processing and the validation approach, all statisti-

cal quantities used throughout the paper are stated
in section 2 for the sake of completeness. Section 3
introduces a short review of the CHAMP data pro-
cessing strategy. The primary measurements are po-
sitions, velocities and accelerations which need to be
related to a gravity field quantity. For this, the so-
called energy balance approach is used in order to
derive pseudo-potential observations along the orbit
(Jacobi, 1836; Jekeli, 1999; Gerlach et al., 2003).
Subsequently, a global spherical harmonic analysis is
performed in order to derive the global satellite-only
solution. Since the data is not equally distributed, a
local refinement in areas with high data density can
make better use of the available information (Garcia,
2002; Weigelt, 2007). Here, the Slepian functions
are employed and a proof of concept is presented in
section 3.3.2. Subsequently, section 4 presents the
global and local validation results in an attempt to in-
dicate whether the CHAMP data agrees better with
PGM2007A or GGM02S.

2 Tools of analysis

The quantification of the differences between
CHAMP, GGM02S and PGM2007A is done in
term of statistical quantities. For completeness, all
the necessary formulas are given here with short ex-
planations. They will be used extensively in section
4.

2.1 Spatial domain

Besides the maxima and minimum values and their
location, values of interest are the mean, the standard
deviation and the root mean square (RMS), arithmetic
as well as area-weighted. The mean is given as:

arithmetic: µ =
1
N

N

∑
i=1

xi (1)

area weighted: µw =

N
∑

i=1
wi ·xi

N
∑

i=1
wi

, (2)

wherexi are the observations,N the number of obser-
vations andwi the weights which are here determined
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by calculating the area of a Voronoi cell around each
data point. A Voronoi cell is characterized by an area
in which any point is closer to the data point than
to any neighboring data point. It is also referred to
as Thiessen-polygons, Voronoi diagram or Dirichlet
decomposition (Barber et al., 1996).

The standard deviation is defined as the square root
of the second moment of the mean, i.e. the square
root of the variance:

arithmetic: σ =

√

1
N

N

∑
i=1

(xi − µ)2 (3)

area weighted: σw =

√
√
√
√
√
√
√

N
∑

i=1
wi · (xi − µw)2

N
∑

i=1
wi

. (4)

TheRMS is defined very similar:

arithmetic: RMS =

√

1
N

N

∑
i=1

x2
i (5)

area weighted: RMSw =

√
√
√
√
√
√
√

N
∑

i=1
wi ·x2

i

N
∑

i=1
wi

. (6)

In case of a zero mean, standard deviation andRMS

will coincide.
Two, more rarely, used quantities are the skewness

and kurtosis (Webster and Oliver, 2001). The skew-
ness coefficient is defined formally as the third mo-
mentum of the mean divided by the third power of
the standard deviation:

g =
1

σ3 ·
1
N

N

∑
i=1

(xi − µ)3 . (7)

It is a measure of the asymmetry of the observations.
Symmetric distributions haveg = 0. Comparisons
between means of different data sets are unreliable if
the data is skewed. The kurtosis gives an estimate of
the peakedness of a distribution:

k =
1

σ4 ·
1
N

N

∑
i=1

(xi − µ)4 . (8)

For normal distributionsk = 0; flatter distributions
havek < 0 and more peaked onesk > 0.

2.2 Spectral domain

The spherical harmonic coefficients̄Klm are two-
dimensional quantities which are derived, e.g. in
a least-squares adjustment or by quadrature. As
output, the covariance matrix of the unknownsQx̂x̂

might be available. Taking the diagonal elements,
the variance of the coefficients can be represented but
correlations are neglected.

diag(Qx̂x̂) = VAR {K̄lm, K̄lm} = σ2
lm (9)

The variance primarily represents the internal accu-
racy of the estimation, i.e. the fit of the model to the
data. For a comparison with external data the differ-
ence between two signal spectra is more adequate:

∆lm = K̄2
lm− K̄1

lm. (10)

The advantage of the latter is that it can also be used
when Qx̂x̂ is not available. Both of them are two-
dimensional representations of signal and noise.

The most common way to determine a one-
dimensional error spectrum from spherical harmonic
coefficients is to derive degree-specific quantities.
The first one to be mentioned is the error degree vari-
ance:

σ2
l =

l

∑
m=−l

σ2
lm ∀ l ∈ [2. . .L] . (11)

The summation in this case is from−l to l , where the
negative degrees denote the sine and the positive the
cosine coefficients. The error degree variance rep-
resents the total error power in the coefficients per
degree and is a quadratic quantity. Dividing it by
the number of coefficients(2l +1) and taking the
square root, an average standard deviation for the co-
efficients of a specific degreel can be derived. The
result is the root mean square of the error spectrum
per degree:

RMSl =

√

σ2
l

2l +1
=

√
√
√
√

1
2l +1

l

∑
m=−l

σ2
lm. (12)

The RMSl is a representative standard deviation if
and only if the error spectrum is isotropic, i.e. it is
independent of the orderm. Order specific compo-
nents can also be derived but do not have any physi-
cal meaning. Equations (11) and (12) can be applied
analogously to the signal difference spectrum (equa-
tion 10) yielding difference degree variances and dif-
ference degreeRMS. These quantities will be used in
the discussion of the global solutions in section 4.1.
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3 Data Processing

The gravity field from CHAMP-data is recovered
using the energy balance approach which yields
pseudo-potential observations along the orbit (cf.
section 3.1), followed by a brute-force spherical har-
monic analysis on the sphere, see section 3.2. More
details about the data processing can be found in
Weigelt (2007). In section 3.3, we show that a lo-
cal refinement could provide additional information
in selected areas and introduce the framework of a
Slepian analysis.

3.1 Energy balance approach

The basic idea is to separate orbit determination and
gravity field recovery into three steps. The first step
is the derivation of the position data which is done
kinematically and provided by the Institute for Astro-
nomical and Physical Geodesy (IAPG), TU Munich
(Švehla and Rothacher, 2005). The data is consid-
ered independent from a priori information because
no dynamical model is used in the calculation. Since
the kinematic derivation yields positions only, veloci-
ties have to be derived numerically by a 4th order cen-
tral difference Taylor differentiator (Khan and Ohba,
1999). Subsequently, pseudo-potential observations
are derived from the position data. The utilized en-
ergy balance approach is based on the law of energy
conservation. The basic formula is given as:

T = Ekin −U −Z−

∫
(

f+∑
i

gi

)

dx+c, (13)

whereT is the disturbing,U the normal andZ the
centrifugal potentials. The latter two can be cal-
culated pointwise from the position data. The nor-
mal potential is derived from theWGS84-constants
which are given in table 1. The kinetic energyEkin is
derived from the velocity of the satellite. The integral
contains all known time-variable gravitational accel-
erationsgi which are derived from models and are

Tbl. 1. Constants in the calculation

name value

GM grav. parameter 3.986004415·1014m3/s2

R radius 6378136.46m
J2 SH-coefficient 1.08262982131·10−03

J4 SH-coefficient −2.37091120053·10−06

J6 SH-coefficient 6.08346498882·10−09

J8 SH-coefficient −1.42681087920·10−11

ω rotation rate 7.292115085·10−05rad/s

summarized in table 2. Non-gravitational accelera-
tionsf are measured using the accelerometer onboard
CHAMP and calibration parameters are determined
together with the integration constantc using a com-
parison of the pseudo-observables with the disturb-
ing potential along the orbit derived from a knowna
priori model (here EGM96). Necessary transforma-
tions between the Earth-fixed and inertial frame are
done in accordance with the IERS Conventions 2003
(McCarthy and Petit, 2003). Overall, two years of
data from April 2002 till February 2004 are used for
the calculation.

Tbl. 2. Utilized models for known corrections

source model

astronomic tide Sun/Moon (point masses)
coordinates from DE405

solid Earth tide IERS Conv. 2003,§6.1
solid Earth pole tide IERS Conv. 2003,§6.2
ocean tide FES2004
ocean pole tide IERS Conv. 2003,§6.3
relativistic corrections IERS Conv. 2003,§10.2

3.2 Global spherical harmonic analysis

The spherical harmonic analysis with its inherent
downward continuation is done using a least-squares
approach. The mathematical model connecting the
pseudo-observableT with the spherical harmonic co-
efficients is given as:

T (r,θ ,λ ) =
GM
R

∞

∑
l=2

l

∑
m=−l

(
R
r

)l+1

K̄lmȲlm, (14)

whereG is the gravitational constant,M the mass of
the Earth,R the radius,r, θ andλ the spherical co-
ordinates of the calculation point,̄Klm the fully nor-
malized spherical harmonic coefficients andȲlm the
spherical surface harmonics. The indices of the dou-
ble summation are the degreel and the orderm. For
the least squares adjustment the equation can be re-
organized into matrix-vector form:

l+ ε = Ax, (15)

wherel is the observation vector and is filled with
the observationsT. It is a stochastic quantity, which
is expressed by the model inconsistenciesε. The un-
known vectorx is formed by the spherical harmonic
coefficientsK̄lm. All other elements of equation (14)
are part of theA-matrix, i.e. for one particular mea-
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surementk an elementj of A reads:

ak j =
GM
R

(
R
r

)n j+1

Pn j ,mj (cosθk)e
imj λk. (16)

The factor j denotes the column of the design ma-
trix A and stands for a coefficient with one specific
combination of degreel and orderm. Here, the or-
dering is in accordance withColombo(1983) which
collectesC̄lm- andS̄lm-coefficients for all degrees in
blocks of ascending orders. As an example and con-
sidering a maximum degree ofL = 70, the column
j = 3 corresponds tōC20, j = 73 toC̄21 and j = 143
to S̄21. The least-squares solution is then achieved as:

x̂ =
(
ATPA

)−1

︸ ︷︷ ︸

N−1

ATPl
︸ ︷︷ ︸

y

= N−1y, (17)

where P is the inverse of the cofactor matrix and
contains the error information of the observations.
The kinematic positions are provided with error in-
formation for each data point including correlations
between the coordinates but different data points are
assumed uncorrelated.

3.3 Local refinement with Slepian functions

The motivation for a local refinement comes from
the investigations bySneeuw et al.(2003) who
showed among others that the data distribution
and the groundtrack influence the accuracy of the
monthly CHAMP solutions. A similar effect for the
GRACE-mission was discussed byYamamoto et al.
(2005) andWagner et al.(2006). It is also known that
the orbits are converging towards the poles yielding
a much higher data density in these areas. Figure 1
shows the number of data points in 100km2 patches
vs. the latitude. The increase of the data points per
area is clearly visible. Consequently and by utilizing
locally supported base functions, one can make better
use of the information in the high-latitude areas.
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Fig. 1. Number of points per 100km2 area vs. latitude

3.3.1 An empirical localizing base function

Consider a functionf which is strictly contained
within an arbitrarily shaped regionω on the sphere
Ω. Since it will not have values outside this area, it
is spacelimited. Nevertheless and as any function on
a sphere, it can be described by an infinite spherical
harmonic expansion:

f =
∞

∑
l=0

l

∑
m=−l

f̄lmȲlm, (18)

whereȲlm are again the spherical surface harmonics
and f̄lm the spherical harmonic coefficients, both nor-
malized. Practically, a series till infinity cannot be
implemented and the series needs to be truncated at a
maximum degreeL. The function becomes bandlim-
ited.

Strictly speaking, no spherical function can be
spacelimited and bandlimited at the same time. How-
ever, a set of bandlimited functions can be found,
which are optimally concentrated within the areaω ,
and vice versa a spacelimited function, which is op-
timally concentrated within an interval 0≤ l ≤ L.
Gilbert and Slepian(1977) showed that this leads to
the same description as an algebraic eigenvalue prob-
lem. The basic idea is to maximize the ratio between
the spacelimited and the unlimited norm and thus the
spatial concentration of the bandlimited function:

ξ =
‖ f‖2

ω
‖ f‖2

Ω
=

∫

ω
f 2 dΩ

∫

Ω
f 2 dΩ

, (19)

whereξ is a measure of the spatial concentration.
Using the bandlimited spherical harmonic synthesis
formula and making use of the orthonormality rela-
tion of the normalized spherical surface harmonics,
the relation reads

ξ =

L

∑
l=0

l

∑
m=−l

f̄lm
L

∑
n=0

n

∑
k=−n

Dlmnk f̄nk

L

∑
l=0

l

∑
m=−l

f̄ 2
lm

, (20)

with

Dlmnk =
∫

ω

ȲlmȲnkdΩ. (21)

The elementsDlmnk can be arranged in a matrix D
which is real, symmetric and positive definite. The
solution of the spatial localization problem is found
as the solution of an algebraic eigenvalue problem
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forming an orthogonal set of base functions (Simons
et al., 2005):

D = GΞGT . (22)

Each column ¯g j of G represents an eigenvector and
forms a base function̄Sj which can be reconstructed
by

S̄j (λ ,θ ) =
L

∑
l=0

l

∑
m=−l

ḡ j
lmȲlm (λ ,θ ) . (23)

The corresponding eigenvalueξ j indicates the spa-
tial concentration in the areaR. Using the fully nor-
malized Legendre functions for the calculation of
Dlmnk, the eigenvalues will be normalized.ξ = 1 rep-
resents an optimal andξ = 0 no concentration in the
area of interest.

The application of the Slepian functions in physi-
cal geodesy is also not new.Albertella et al.(1999)
considered the Slepian functions as a possible solu-
tion to the polar gap problem. Similar to equation
(14), the potential along the orbit can be developed
in Slepian base functions:

T (r,θ ,λ ) =
GM
R

(L+1)2

∑
j=1

β̄ j S̄j (λ ,θ , r) (24)

The unknown coefficients̄β j are to be determined
in a least-squares adjustment. Practically, not all
(L + 1)2 Slepian coefficients can be estimated when
utilizing local data. Only those with a concentration
of 99% or higher will be considered since only those
are well supported by the data. Less concentrated
base functions will either cause leakage errors or lead
to a rank deficient design matrix.

3.3.2 Proof of concept

The concept is proven in a test scenario with real
CHAMP data of January 2003. GGM02S will serve
as a reference for the comparison of the global spher-
ical harmonic solution and Slepian solution. All so-
lutions as well as the development of the kernelDlmnk

and the Slepian base functions are restricted to de-
gree 70. The area of interest is a 23.5◦ spherical cap
over Canada. Since only local data is to be used for
the refinement, the long wavelength part cannot be
estimated and needs to be reduced beforehand. For
this, a global spherical harmonic solution till degree
and order 40 has been derived from the data of Jan-
uary 2003 and reduced. After the estimation of the
parameter̄β j , equation (24) can be used to synthesis
the data in the area of interest and compare the results
in the spatial domain with GGM02S.

The statistics of the comparison are shown in ta-
ble 3 and indicate that by the usage of the Slepian

Tbl. 3. Statistics of the differences of the global monthly
spherical harmonic solution and the Slepian solution to
GGM02S in terms of geoid height

quantity global SH Slepian

maximum 4.03m 2.39m
atλ = 110.62◦ W 60.62◦ W

φ = 52.71◦ N 45.63◦ N

minimum −3.76m −2.21m
atλ = 106.87◦ W 106.04◦ W

φ = 49.38◦ N 79.38◦ N

µ -0.015m -0.011m
µw -0.020m -0.015m

σ 1.384 m 0.855m
σw 1.404 m 0.873m

RMS 1.383 m 0.856m
RMSw 1.404 m 0.873m

g -0.026 0.110
k -0.170 -0.271

functions an improvement has been reached. The
maximum and minimum values are reduced by ap-
proximately 40% from 4.03m to 2.39m and from
−3.76m to−2.21m, respectively. Since the mean
value is close to zero, standard deviation andRMS

are almost identical but both are reduced by 42.3%
in case of the Slepian solution. The skewness indi-
cates that the differences of the Slepian solution are
slightly more asymmetric. Nevertheless, the values
for both solutions are close to zero, i.e. the data
can be considered unskewed and thus the compari-
son of the mean values is valid. The kurtosis shows
a slightly flatter solution in case of the Slepian func-
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Fig. 2. Histogram of the monthly spherical harmonic solu-
tion (left) and the Slepian solution (right) vs. GGM02S in
terms of geoid height
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tions, i.e. peaks in this solution are flatter than in the
global spherical harmonic solution. Practically, there
is also no difference between the arithmetic and the
area-weighted quantities which suggests that the dif-
ferences are normally distributed. However, the his-
tograms of both comparisons in figure 2 show that the
data in the Slepian solution is closer to be normally
distributed than the data of the global spherical har-
monic solution.

Figure 3 visualizes the comparison in the spatial
domain in terms of geoid height. The differences of
the spherical harmonic solution (top) grows with in-
creasing latitude and are more pronounced than the
one of the Slepian solution (bottom). The pattern ap-
pears to be similar but in the later case the absolute
values are approximately half the size of the former.

Fig. 3. Difference of the monthly spherical harmonic
solution (top) and the Slepian solution (bottom) w.r.t.
GGM02S in terms of geoid height

The results show that the improvement is primarily
due to a better modelling of the short wavelength part
of the spectrum and it can be concluded that better
use of the data can be made by a local refinement. In
the shown case, the global spherical harmonic analy-
sis is obviously not able to take full advantage of the
data density in the high-latitude area.

4 Validation results

After having outlined the data processing and the val-
idation tools, this section will deal with the actual
validation of the gravity field model PGM2007A.
Naturally, both PGM2007A and GGM02S will out-
perform the CHAMP solution due to the higher data
quality, i.e. a comparison in terms of absolute val-
ues does not make sense. Instead, the idea is to use
the CHAMP solution as an indicatior by compar-
ing the differences to PGM2007A and GGM02S in
the spectral and spatial domain. Consequently, it can
only be concluded to which model the CHAMP data
fits better.

4.1 Global comparisons

The first comparison is done in the spectral do-
main. Figure 4 shows error and difference degree
RMS of the three different solutions. The bottom
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GGM02s

∆
GGM02s−CHAMP

∆
PGM2007A−CHAMP

∆
PGM2007A−GGM02s

Fig. 4. Error and difference spectra of GGM02S, PGM-
2007A and the CHAMP-solution

black solid line shows the difference degreeRMS

between PGM2007A and GGM02S whereas the
dashed black line indicates the error degreeRMS of
GGM02S. Note the significant discrepancy. For the
very low degrees, the difference degree spectrum is
following the GGM02S error spectrum but from de-
gree 20 onwards the difference deviates up to one or-
der of magnitude.

The question is if CHAMP can serve now as an
indicator. The gray and black line with dot marks
are the difference degreeRMS between GGM02S
and PGM2007A both w.r.t. CHAMP. They are al-
most identical with the exception of degree 2. Here,
the PGM2007A and the GGM02S solution disagree
slightly which might be related to the handling of
theC̄21- andS̄21-coefficients. Obviously and for all
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degrees, the difference between PGM2007A and
GGM02S is smaller than the difference to CHAMP
and thus drawing conclusions will be very difficult.
It is a first indication that both fields will perform
equally in the comparison to the CHAMP data.

The comparison to the CHAMP data in the spa-
tial domain and on a global scale is shown in figure 5
but it is inconclusive. Both solutions show no signif-
icantly different pattern. The statistical data and the
histograms support this. The most significant differ-
ence is in the extreme values. The maximum differs
with 1.342m for GGM02S and 1.326m for PGM-
2007A by 1.6cm. However, their location is vary-
ing and, considering the random nature of the dif-
ferences in figure 5, this cannot be seen as signifi-
cant. On the other hand, the minima with−1.338m
for GGM02S and−1.364m for PGM2007A are at
the same location and differ by 2.6cm and thus show
a very slight tendency of the CHAMP data towards
the GGM02S solution. Mean value, standard devi-
ation andRMS have the same slight tendency as the
minimum but on average the difference for the latter
two is 4mm which is approximately 1% of the sig-
nal and thus cannot be considered significant. The
skewness shows the difference between GGM02S

and CHAMP is slightly more symmetric and the kur-
tosis indicates that it is also slightly less peaked than
the difference between PGM2007A and CHAMP.

Overall, it has to be concluded that the differ-
ences are not significant and the GGM02S as well

Fig. 5. Spatial comparison between the GGM02S and
PGM2007A solution w.r.t. the global CHAMP solution

Tbl. 4. Statistics of the differences of GGM02S and
PGM2007A to the CHAMP solution in terms of geoid
height

quantity PGM2007A GGM02S

maximum 1.326m 1.342m
atλ 77.00◦ E 72.00◦ E

φ 29.00◦ N 22.00◦ S

minimum −1.364m −1.338m
atλ 19.00◦ E 19.00◦ E

φ 52.00◦ S 52.00◦ S

µ -0.018 m -0.004m
µw -0.024 m -0.009m

σ 0.320 m 0.317 m
σw 0.329 m 0.326 m

RMS 0.321 m 0.317 m
RMSw 0.330 m 0.326 m

g 0.038 0.029
k 0.239 0.199
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Fig. 6. Histogram of PGM2007A (left) and GGM02S

(right) w.r.t. the CHAMP soluition in terms of geoid
height

as the PGM2007A solution show the same behav-
ior in the comparison to the CHAMP data. At best,
one can say that there is a very slight tendency of the
CHAMP data towards the GGM02S-solution.

4.2 Local comparison

For the local refinement of the CHAMP solution a
latitude band from 60◦N to 85◦N is chosen and 141
base functions are used in the Slepian adjustment to
improve the solution. In the remove step the full
global spherical harmonic solution from CHAMP
till degree 70 is used. The recovered residual sig-
nal has a strength ofδN ≈ 10cm which is added in
the spatial domain to the spherical harmonic solution
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Fig. 7. Spatial comparison between the PGM2007A (top)
and GGM02S (bottom) solution w.r.t. the CHAMP solu-
tion for a latitude band from 60◦ N to 85◦ N

and hereafter called the Slepian solution.
The comparison in the spatial domain of PGM-

2007A and GGM02S to the Slepian solution is
shown in figure 7 but again shows no significant dif-
ferences. The top picture, i.e. the comparison be-
tween PGM2007A and the Slepian solution, appears
slightly darker but both pictures are dominated by the
deficiencies in the CHAMP data.

The histograms show nearly identical values for
both cases. The difference between PGM2007A and
the Slepian solution has a by 2cm higher mean value
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Fig. 8. Histogram of GGM02S and PGM2007A solution
w.r.t. the Slepian solution for a latitude band from 60◦ N to
85◦ N

which explains the darker impression of the top panel
in figure 7. The extremas of both solutions are at
the same location and thus comparable. The maxi-
mum values are 1.014m for GGM02S and 1.032m
for PGM2007A and differ by 1.8cm. The minimum
values are−1.207m for GGM02S and−1.217m for
PGM2007A and thus 1cm smaller in the difference
of the GGM02S to the Slepian solution, i.e. there is
again a slight tendency of the CHAMP data towards
the GRACE solution. The same can be seen in the
mean value. All other statistics are very similar and
the differences are not significant.

Tbl. 5. Statistics of the differences of PGM2007A and
GGM02S to the CHAMP solution in terms of geoid height
for a latitude band from 60◦ N to 85◦ N

quantity PGM2007A GGM02S

maximum 1.032m 1.014m
atλ 89.38◦ W 89.38◦ W

φ 66.88◦ N 66.88◦ N

minimum −1.217m −1.207m
atλ 176.88◦ W 176.88◦ W

φ 61.88◦ N 61.88◦ N

µ -0.030 m -0.006m
µw -0.031 m -0.015m

σ 0.247 m 0.245 m
σw 0.318 m 0.313 m

RMS 0.247 m 0.245 m
RMSw 0.318 m 0.314 m

g -0.0347 -0.0378
k 0.5799 0.6098

5 Conclusions

In conclusion, one can say that the poorer quality
of the CHAMP data is preventing a real statement
about the quality of the PGM2007A. At best, one
can say that the global as well as the local CHAMP
solution agree slightly better with the GRACE-
only solution GGM02S than with the PGM2007A.
PGM2007A and GGM02S show significant differ-
ence from degree 20 to 70 which, however, cannot
be verified nor quantified in the comparison to the
CHAMP data.
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