
Evaluation of EGM08 – Globally and Locally in South Korea 
 
Christopher Jekeli1, Hyo Jin Yang1, Jay H. Kwon2 

 
1 Division of Geodesy and Geospatial Science 
 School of Earth Sciences 
 Ohio State University 
 Columbus, Ohio 
 
2 Department of Geoinformatics 
 University of Seoul 
 Seoul, Korea 
 
 
 
Abstract 
The newest global geopotential model, EGM08, is evaluated locally using GPS/leveling data in 
South Korea and globally in terms of its degree variances (power spectral density).  It is found 
that the agreement between the EGM08 geoid and the geoid undulation derived from 
GPS/leveling data over 500 irregularly distributed points has a standard deviation of 18.5 cm.  
This agreement is better than with EGM96 (27.4 cm).  From the mean difference between 
EGM08 and GPS/leveling it is found that the local geoid (national vertical datum of South 
Korea) is offset from the global geoid by 43.4 cm, which agrees roughly with the 34 cm offset 
implied by the EGM96 analysis.  The degree variances of the EGM08 geoid show that the 
EGM96 is significantly underpowered at its high degrees.  They also imply that the Earth’s high-
frequency gravitational field does not have constant fractal dimension, which may provoke 
additional investigation. 
 
Introduction 
We start with the spherical harmonic expansion of the disturbing potential, T, in terms of 
spherical polar coordinates, ( ), ,r θ λ : 
 

 ( ) ( )
1

2

, , ,
n n

nm nm
n m n

GM aT r C Y
a r

θ λ θ λ
∞ +

= =−

 =  
 ∑∑ , (1) 

 
where GM is the product of Newton’s gravitational constant and Earth’s total mass (including the 
atmosphere), a is the radius of the bounding (Brillouin) sphere, the nmC  are the (unit-less) Stokes 
coefficients, and the ( ),nmY θ λ  are surface spherical harmonics defined by 
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The functions, ,n mP , are associated Legendre functions, fully normalized so that 
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where σ  represents the unit sphere.  Representation (1) assumes that M is also the mass of the 
normal ellipsoid, whose center, furthermore, coincides with Earth’s center of mass, as well as the 
coordinate origin. 
 Let W be the gravity potential, U the normal gravity potential, and x  a point in space.  Then, 
 
 ( ) ( ) ( )W T U= +x x x . (4) 
 
In linear approximation, we have 
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where both x  and 0x  are on a normal to the ellipsoid and h is the vertical distance between 
them.  If =x x  is a point on the geoid and 0 0=x x  is the corresponding point on the ellipsoid 
(Figure 1), then in this case, h N= , the geoid undulation, and we have 
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x x
x x  is normal gravity on the ellipsoid, ( ) 0W W=x , and 

( )0 0U U=x .  The surface, ( ) 0W W=x , represents the global geoid (e.g., the level surface that 
best fits the mean sea surface on a global scale, although one may adopt other definitions), and 
N, given by equation (6), is the geoid undulation with respect to the given normal ellipsoid. 
 
Local Vertical Datum 
If the adopted normal ellipsoid is the one that also best fits the global mean sea surface, then 

0 0U W=  and we obtain the geoid undulation of the global geoid with respect to the best-fitting 
ellipsoid: 
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If the ellipsoid is not optimum (such as the WGS84 ellipsoid, by today’s accuracy standards), 
then the geoid undulation of the global geoid with respect to this ellipsoid is 
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 We may also consider a local geoid, which defines a national vertical datum.  The origin 
point for the vertical datum often does not lie on the global geoid, since it is tied to a local mean 
sea level point.  In that case, the local geoid does not coincide with the global geoid; and, the 
geoid undulation of the local geoid with respect to the non-optimum ellipsoid is given by (see 
also Figure 1) 
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The offset given by the second term on the right side, ( )( )WGS84

0 0W U γ− − , is about 53 cm− , 

based on the current best value, 2 2
0 62636856.33 m /sW = , and the parameter values of the 

WGS84 normal ellipsoid.  The offset given by the third term, ( )local
0 0W W γ− , depends on a local 

determination of local
0W  (see below). 

 In principle, the infinite spherical harmonic series (1) for the disturbing potential converges 
to the true value only on or above the Brillouin sphere (neglecting the atmospheric and other 
extra-terrestrial masses).  Therefore, we should not express the geoid undulation in terms of the 
series by substituting (1) into (6) because this would require the evaluation of the series at a point 
on the geoid, x , which is likely inside the bounding sphere.  However, in practice, the infinite 
series must be truncated to some finite degree, maxn , since one can determine only a finite 
number of coefficients, nmC , from a given finite set of data on a bounding sphere.  As such, the 
concern about formal series convergence disappears, although there is still the question of 
whether the truncated series accurately represents the disturbing potential.  On the other hand, we 
can now use the truncated series anywhere in free space, even below the bounding sphere and on 
or above the Earth’s surface, since the truncated series is harmonic anywhere in free space.  Still, 
in order to respect theory, we cannot use the series inside the Earth, specifically on the geoid, 
which would be the case in equation (6), because the disturbing potential is not harmonic there. 
 If we apply equation (5) to two points again on a normal to the ellipsoid, but now e=x x  is a 
point on the Earth’s surface and 0 0

e=x x  is a point on the telluroid, which is a surface such that 

( ) ( )0
e eU W=x x , then the distance between these is called the height anomaly ( h ζ= ) and is 

given (in linear approximation) by 
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Now, we can substitute legitimately the series for T (truncated at maxn n= ), because ex  is not 
below the Earth’s surface, and get 
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where er  is the radius to the point, ex .  Without significant error at this stage of the analysis, we 
may also approximate, ( ) 2

0
e GM aγ ≈x , which simplifies the antecedent factor of the series to 

a, and which can further be approximated by a R≈ , where R is a mean Earth radius. 
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Figure 1: Geometry of geoid, ellipsoid, telluroid, and Earth’s surface. 

 
 
 We note that the difference, d, between the height anomaly and the geoid undulation is 
 

 
0

* Bgd N H H H ∆ζ
γ

= − = − ≈ , (12) 

 
where H is the orthometric height (with respect to the global geoid), Bg∆  is the Bouguer gravity 
anomaly and 0γ  is an average value of normal gravity on the ellipsoid.  World-wide, this 
difference, for the EGM96 model, has a mean value of about -5 cm, with a standard deviation of 
about 22.3 cm and an extreme absolute value of 311 cm (Lemoine et al., 1998, p.5-14). 
 
Assessment Using GPS/Leveling Data 
For a local point-wise assessment of a global model for the geoid undulation, such as EGM96 or 
EGM08 (Pavlis et al., 2008), one may consider using a set of GPS/leveling data, which yield the 
geoid undulation of the local geoid with respect to the WGS84 ellipsoid: 
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 ( ) ( )WGS84 WGS84
local localN h H= − . (13) 

 
The points where such data are available for the Republic of South Korea (J. Kwon, personal 
communication, 2008) are shown in Figure 2.  The data set contains 500 points where both the 
GPS height above the WGS84 ellipsoid, ( )WGS84h , and the orthometric height with respect to the 
national vertical datum, localH , have been measured. 
 In view of equation (9), we must consider in our evaluations that the local geoid differs from 
the global geoid ( local

0 0W W≠ ).  Fell and Tanenbaum (2001) report a bias of about 

( )local
0 0 0 90 cmW W γ− =  (i.e., the orthometric heights with respect to the national vertical datum 

are about 90 cm smaller than with respect to the EGM96 geoid, assumed to be the global geoid).  
This bias was determined using 27 GPS/leveling stations in South Korea.  Although not 
explicitly stated in their paper, we assume that the EGM96 geoid undulation was computed with 
respect to the WGS84 ellipsoid, rather than the best-fitting ellipsoid.  Hence, the 90 cm bias 
should be modified by the 53 cm−  difference between these two ellipsoids, so that the bias 
between vertical datums (global and national) is only 37 cm.  In addition, we must assume a 
mean tide system because the GPS/leveling data presumably were not corrected for tidal effects. 
 Evaluating the geoid undulation according to 
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where er  is the radial distance to the ellipsoid ( 6378137 ma = ) and according to  
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using software supplied for the evaluation of EGM96 (that includes the correction, d− , equation 
(12)), we found in South Korea only differences with a standard deviation of about 1 cm.  Thus, 
we can safely neglect for present purposes the topographic bias (the mismodeling associated with 
evaluating a harmonic function inside the masses on the geoid).  Table 1 compares the geoid 
undulation computed using equation (14) for the models EGM96 and EGM08 against the geoid 
undulation computed from GPS/leveling data, according to equation (13).  The standard 
deviation of the difference includes both commission and omission errors of the spherical 
harmonic model, and also errors in the GPS/leveling data.  The mean difference accounts for 
different ellipsoids and geoids. 
 Considering EGM96, the mean difference of 19 cm (Table 1) implies the following 
difference between the local vertical datum (LD) and the global geoid: 
 

42



 

( ) ( )( )
( )

EGM96 WGS84 LD EGM96 best ellip LD

EGM96 best ellip LD

global geoid LD

global geoid LD

19 cm 53 cm

53 cm

53 cm

34 cm

N h H N h H

N h H

H H

H H

= − − = − − −

= − + +

= − + +

− =

 (16) 

 
which agrees approximately with the modified result by Fell and Tanenbaum (2001).  For the 
EGM08 geoid comparison to the GPS/leveling data, the mean difference of 9.6 cm similarly 
implies 
 
 global geoid LD 43.4 cmH H− = . (17) 
 
 

 
Figure 2: Points where GPS/leveling data are available. 

 
 
Table 1: Statistics for the differences between geoid models and GPS/leveling data at 500 points 
shown in Figure 2. Units: [m]. 
model ( maxn ) minimum maximum mean st.dev. 
EGM96 (360)  -0.52 1.43 0.189 0.274 
EGM08 (2160) -0.54 1.17 0.096 0.185 
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Degree Variances at High Degrees 
As might be expected, the agreement between EGM08 and the GPS/leveling data is better than 
for EGM96.  However, it is also interesting to know the reason for the remaining difference 
between these two types of geoid undulations.  Certainly, errors in the GPS heights and in the 
leveling data contribute, but the extent of this is not known; and common wisdom would dictate 
that aside from the occasional bad data neither GPS height errors nor orthometric height errors 
would contribute at the level of one or two decimeters.  Therefore, we assume that the 
differences are due primarily to errors in the spherical harmonic model. 
 We consider these model errors in terms of degree variances, which may be separated into 
commission and omission errors.  By putting a bound on the omission error, we will be able to 
provide some assessment of the commission error, since by assumption Table 1 essentially 
provides the total error.  Quantifying the omission error relies on a statistical model for the 
harmonic coefficients.  That is, the high-degree coefficients are assumed to behave in a 
stochastic sense with a particular standard deviation (or, variance) for each degree (and zero 
average).  Scaled to the geoid undulation, the degree variance is given by 
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where er  is taken as constant (e.g., er a= ).  W.M. Kaula promoted and developed this idea; and 
an often-used rule-of-thumb (Kaula, 1966, p.98), bearing his name, provides a rough, global 
estimate of the standard deviation of the omission error: 
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Hence, if max 360n = , then ( )180

omission 18 cmσ = .  Many other researchers, notably Rapp (1979), have 
devised refinements of this model.  Figure 3 shows the degree variances of the geoid according 
to the EGM96 and EGM08 models, as well as Kaula’s rule. 
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Figure 3: Degree variances of the geoid according to various models. 

 
 
 A significant feature of the new EGM08 model is the demonstration that the EGM96 model 
is under-powered at the high degrees, as already predicted earlier by some investigators (e.g., 
Jekeli, 1999).  We can transform from degree variance to power spectral density (psd), Φ , using 
the relationship 
 

 ( ) ( )
2

22
N n N n

Rf
n

πΦ σ= , (20) 

 
where ( )2nf n Rπ=  is cyclical frequency.  Plotting the psd’s, now with frequency also on a 
logarithmic scale, we find a second striking feature (Figure 4).  While Kaula’s rule significantly 
overestimates the psd of the geoid undulation at the lower frequencies, it underestimates the psd 
at the high frequencies, although the power attenuation is essentially correct, at least up to 
wavelengths of about 30 km (frequency, 53 10  cy/m−× ).  It has been suggested that the Earth’s 
gravitational potential, like its topography and that of other planets, behaves like a fractal (e.g., 
Turcotte, 1987).  That is, its psd obeys a power law, essentially of the form: 
 
 ( ) 0,f bf f fαΦ −= ≥ , (21) 
 
with constants, α , b, where α  is related to the fractal dimension of the fractal.  Clearly, the 
EGM08 model indicates that for frequencies, 6 52 10  cy/m 3 10  cy/mf− −× ≤ ≤ × , the psd is a 
power law.  If one postulates that the gravitational field is a fractal (with constant fractal 
dimension) at high frequencies (as often modeled, e.g., by Jekeli (2003), on the basis of local 
gravity anomaly and topographic data sets), one might question the significant upturn in the 
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EGM08 psd at frequencies, 53 10  cy/mf −≥ × , corresponding to harmonic degrees greater than 
about 1200.  On the other hand, if accurate at these higher frequencies, EGM08 shows that the 
Earth’s gravitational potential does not possess the same fractal dimension at all (higher) 
frequencies. 
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Figure 4: PSDs of the geoid undulation according to various models. 

 
 
 A power law model for the psd that more accurately fits the frequency band, 

6 53 10  cy/m 3 10  cy/mf− −× ≤ ≤ ×  (harmonic degrees, 120 – 1200), is given by 
 
 ( ) 12 3.898 2 24.044 10  m /(cy/m)N f fΦ − −= × . (22) 
 
Assuming that this new model (shown in Figure 5) yields a reasonable approximation to the 
standard deviation of the omission error, we find 
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Since the omission and commission errors are independent, we have 
 

 ( )( ) ( )( )max max
2 2n n2

commission total omissionσ σ σ= − . (24) 
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Using the standard deviation in Table 1 as the total (i.e., disregarding errors in the GPS/leveling 
data) and assuming the omission error model , equation (23) is representative of EGM08 in 
South Korea, the commission error in EGM08 for South Korea is about 18.0 cm.  If the new 
omission error model, equation (23), underestimates the high-degree degree variances (high-
frequency psd), as indicated in Figure 5, then it is more difficult to estimate the omission error 
(and hence, the commission error).  Furthermore, it should be emphasized that this model, or 
Kaula’s rule, or any other model extrapolated from the degree variances, is a global model for 
the standard deviation of the omission error.  For a local computation of the geoid undulation 
from a particular model (like EGM08), the standard deviation of the omission error may be 
significantly lower or higher. 
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Figure 5: Global power spectral density of the geoid according to the EGM96 and EGM08 
models, and their power-law extension. 
 
 
 
Summary Discussion 
A brief local assessment of EGM08 has been performed using GPS/leveling data in South Korea.   
These data are available at 500 points somewhat unevenly distributed over the South Korean 
peninsula.  However, they cover many types of terrain.  The accuracy of these data is not 
available (at present), but in terms of standard deviation the EGM08 geoid agrees better (18.5 
cm) with these geometrically derived undulations than does the EGM96 geoid (27.4 cm).  The 
mean differences (gravimetric model minus geometric measurement) also provide an indication 
of the offset of the local vertical datum from the global geoid.  EGM08 implies a 43.3 cm offset, 
compared to the EGM96 model, which implies a 34 cm offset. 
 We note that EGM96 was published as a non-tidal geoid model; whereas EGM08 is offered 
both as a zero-tide and a non-tide geoid model.  We performed our computations of EGM08 
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using its zero-tide version.  The difference between the two is (in terms of geoid undulation; see 
Jekeli (2000, ch.6); Lemoine et al. (1998, ch.11)) 
 
 ( )2

zero-tide non-tide 20.099 3sin 1  [m]N N k ψ− = − − , (25) 
 
where 2 0.29k =  is a Love’s number and ψ  is the geocentric latitude.  In South Korea, this 
latitude is 36ψ ≈ ° , and, hence, zero-tide non-tide 0.001 mN N− = − .  We see that the mean difference, 

( )EGM96 EGM08mean 9.3 cmN N− = , in South Korea is not due to the difference in tidal correction.  
The reason for this mean difference is not known to the authors at this time. 
 The degree variances of the EGM08 geoid show that the EGM96 spectrum is significantly 
underpowered at its high degrees.  Furthermore, it is shown that Kaula’s rule is remarkably close 
in describing the fractal dimension of the field in the frequency band, 

6 52 10  cy/m 3 10  cy/mf− −× ≤ ≤ ×  (corresponding to harmonic degrees, 80 – 1200).  At higher 
frequencies, EGM08 departs from this fractal dimension.  However, if the power-law attenuation 
were an accurate representation of the high-degree variances, then the omission error for EGM08 
would be approximately 4.1 cm (global standard deviation), which if it further holds for South 
Korea would imply a commission error in EGM08 for South Korea of about 18.0 cm (st.dev.), 
assuming relatively insignificant errors in the GPS/leveling data. 
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