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Gravity Field Model UCPH2004 from One Year of
CHAMP Data using Energy Conservation

E. Howe, C. C. Tscherning

Department of Geophysics,

The University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Oe, Denmark

Abstract.  A gravity field model has been estimated
using energy conservation and fast spherical
collocation.

The energy conservation method is based on
knowledge of the state vector and measurements of
non-conservative forces. This is or will be provided
by CHAMP, GRACE and GOCE.

Here the energy conservation method is applied
to calculate gravity potential values from CHAMP
data measured in July 2002 – June 2003. Precise
science orbits and accelerometer data are derived
from GFZ Potsdam. When estimating the loss of
energy due to external forces only friction is
considered, calculated using the along-track
acceleration. A scale-factor for the along-track
accelerometer has been estimated for each half day.

Fast Spherical Collocation requires data located
equidistantly on parallels. It is much faster than
general least squares collocation. Fast Spherical
Collocation has been used to estimate a gravity field
model to degree and order 90, UCPH2004 and a
model UCPHcoll to degree and order 60 has been
estimated with general least squares collocation
using only 1% of data.

Evaluation of the method is made by comparison
with EIGEN-2 and TUM1s. Furthermore the gravity
field is compared to data from the Arctic Gravity
Project (ArGP). Good agreement has been found in
the comparisons.

Keywords.  Energy conservation, CHAMP, gravity
potential, collocation, error correlations

1 Introduction

The energy conservation method has been well
documented in the past few years, see for example
Han et al. (2002), Gerlach et al. (2003) and Howe
et al. (2003a). Every time improvements are found

and new ways to calibrate the data are used. Each
group has its own way to apply the energy
conservation method and to estimate the spherical
harmonic coefficients.

We use the energy conservation to calculate
height anomalies at satellite height. When doing so
we consider the tidal potential corresponding to a
rigid earth of the sun and the moon (Longman
(1959)), the explicit time variation of the gravity
potential in inertial space (Jekeli (1999)) and
friction. We subtract the earth normal potential, U,
without the centrifugal term. The equation reads
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where E0 is an integration constant.
The data used is measured in July 2002 – June

2003. The data are kindly provided by GFZ
Potsdam and are Precise Science Orbits (PSO) and
accelerometer data. On November 6 and December
9 - 10. 2002, orbit manoeuvres have been made
these periods are removed from the data set, see
Reigber (2002). We assume that the accuracy is the
same before and after the orbit manoeuvre.

Only the along-track accelerometer is used and
therefore only friction calculated using this
information is taken into account and no other non-
conservative forces are included. The friction term
reads

∫= dtavF y                                               (2)

A scale factor has been estimated for each half day
in order to calibrate the along-track accelerometer.
The scale factor is estimated by correlating F with
the difference between the calculated gravitational
potential field and an a priori gravity field model.
EGM96 to degree and order 24 is used as a priori
gravity field model; see Lemoine et al. (1998). The
scale factors for the period are shown in Figure 1.
The scale factors show an interesting pattern, which
warrant further investigations.



Figure 1 The scale factors for the period. The x-axis is a number
corresponding to each half day of the period. The y-axis is the
scale factor. The scale factors which are 0 on the figure is days
with no data.

Fast spherical collocation has then been used to
estimate spherical harmonic coefficients to degree
and order 90. A detailed description of Fast
Spherical Collocation can be found in Sansó and
Tscherning (2003). Comparison have been made
with coefficients estimated by general least squares
collocation using 1 % of the data, EIGEN-2
(Reigber et al. (2003)), TUM1s (Gerlach et al.
(2003b)) and data from the Arctic Gravity Project
(ArGP) (Forsberg (2002)).

Bias parameters have been estimated as a method
similar to a cross-over analysis of our data and error
correlations have been calculated.

2 The gravity field model UCPH2004

EGM96 to degree 24 is subtracted from our data in
order to make them statistically more homogeneous.
The residual potential values are then up-
/downwards continued to a common height of
413 km above the ellipsoid. The up-/downwards
continuation is performed using gravity
disturbances calculated from EGM96. Fast
spherical collocation requires that data are located
equidistantly on parallels and at the same altitude.
The residual potential values are therefore gridded
with 0.5° spacing using collocation. From this grid
we estimate the spherical harmonic coefficients and
their associated errors using fast spherical
collocation. After the estimation EGM96 to degree
24 is added to get a complete set of spherical
harmonic coefficients.

2.1 Analysis of the model

Previously 1 month of data was used when
estimating the gravity field model UCPH2003_03
which had good agreement with other post-CHAMP
models; see Howe et al. (2003b). The standard
deviation of the different degrees of the old model
and the new model are compared to see if an

improvement is obtained by having more data, see
Figure 2.
It can be seen that more data gives a significant
improvement of the gravity field model above
degree 25. In both models EGM96 to degree 24 is
subtracted when estimating the model and then
added again. No significant difference is expected
between the two models below degree 25.

Fast spherical collocation can be used to
compute the error co-variances of the spherical
harmonic coefficients, see Tscherning (2004).
Figure 3 illustrate some typical error correlations
for fixed order. The top figure is for degree 90 and
order 2 and the bottom figure is for degree 85 and
order 7. The values of the error correlations show
interesting patterns. But further investigations are
needed in order to explain them.

Figure 2 The standard deviation of the old model (solid)
and of the new model (dotted)

Figure 3 Typical error correlations of the data. The
top figure is for degree 90 and fixed order 2. The
bottom figure is for degree 85 and fixed order 7.



2.2 General least squares collocation

Using general least squares collocation we need
to solve a system of as many equations as
unknowns each having a matrix with combinations
of all of the observations. We have approximately 1
year of 10 sec data, 2567422 data points and for a
useful test at least 30000 data points are needed.
This gives a factor 10 between data and coefficients
determined up to degree 60. There are many ways
of selecting data. In this study every 100th point is
selected. Another way would be to take a mean
value of 100 points or to select more data at places
with much gravitational variation and less data at
places with little gravitational variation.

The result UCPHcoll is compared to UCPH2004.
A mean difference of 0.004 m and a standard
deviation of 0.50 m are seen. It was not expected to
give better result than UCPH2004 since less data
have been used. It can be seen though that general
least squares collocation gives very good results
with only a small amount of data. Further
investigations with larger data sets could lead to an
improvement of the model UCPH2004.

Least squares collocation gives the opportunity
to make a kind of a cross over analysis, where the
data do not have to be in the exact same point. It is
a good test of the accuracy. A bias parameter is
estimated for each day, see Figure 4. It can be seen
that the estimated bias parameters are close to their
error estimates. This shows consistency in the
technique.

3 Evaluation of UCPH2004

The gravity field model is evaluated by comparison
with other state-of-the-art gravity field models and
with data from the Arctic Gravity Project.

From error analysis it can be seen that there is
not much information left above degree 60. The
comparisons are on this basis only made using
coefficients up to degree 60. UCPH2004 is

compared to Eigen-2 and TUM1s. The results are
listed in table 1.

Table 1 Differences between UCPH2004 and EIGEN-2 and
TUM1s in metre

Mean St. dev Min Max
EIGEN-2 -0.008 0.52 -2.76 2.57
TUM1s 0.08 0.54 -2.84 2.51

UCPH2004 is within half a meter of the two gravity
field models used here. Further analysis show that
the main differences are in the polar regions. This
could be due to only taking friction in the direction
of the velocity vector into account and not sun
pressure and cross winds, which are strongest at the
poles.

A comparison between the gravity field models
and data from the Arctic Gravity Project is
conducted to further test the accuracy of the model.
If the comparison is made over the entire arctic area
(64.0°N – 89.9°N, 179.9°W – 179.9°E) EIGEN-2
and TUM1s fits slightly better than UCPH2004, see
table 2. The differences in how well the three
models fit the arctic data are within the standard
deviation for the three models. The gravity field
model estimated with general least squares
collocation UCPHcoll fits as well as UCPH2004
even though there is a difference of 0.5 m between
the two. A new comparison is made in an area
where it previously is seen that the three models
disagree (70°N -80°N, 50°E - 70°E), see table 3.
Here UCPH2004 has a smaller mean difference to
the arctic data than EIGEN-2 and TUM1s and a
slightly better standard deviation. UCPHcoll has a
very small mean difference of less than 1 mGal to
the arctic gravity data but the standard deviation is
bigger.

Table 2 Comparison with ArGP data in the entire arctic region.
Units are mGal..

Mean St. dev Min Max
UCPH2004 -0.91 24.29 -216.23 217.40
EIGEN-2 -0.25 23.53 -209.31 221.72
TUM1s -0.16 23.47 -209.80 221.26

UCPHcoll -0.86 24.11 -218.74 213.34

Table 3 Comparison with ArGP data in the region (70-80°N, 50-
70°E). Units are mGal.

Mean St. dev Min Max
UCPH2004 -1.42 16.11 -45.93 79.29
EIGEN-2 -3.05 16.54 -53.21 81.73
TUM1s -2.98 16.63 -52.90 80.56

UCPHcoll -0.63 17.11 -45.77 81.69

Figure 4 Bias parameters for each day (grey) and the error
estimates (black)



4 Concluding remarks

It is possible with CHAMP data to estimate a state-
of-the-art gravity field model using energy
conservation and collocation.

We find a difference of 0.5 m between
UCPH2004 and EIGEN-2 and TUM1s. The three
models all have a standard deviation of about
24 mGal compared to the arctic gravity data. This
shows that our gravity field model UCPH2004 is
comparable to other state-of-the-art gravity field
models.

In order to enhance the gravity field model the
entire acceleration vector should be taken into
account. Further investigations are needed. The
estimated scale factors show that it would induce an
error if the scale factor was assumed to be constant.
It may even be a good idea to estimate a scale factor
more often than each half day, one per revolution
for example.

The accuracy has been improved compared to
our older models due to more data. Comparison
with general least squares collocation has been
made. It shows that the techniques are consistent.
Furthermore it is seen that general least squares
collocation can improve our spherical harmonic
coefficients. The only drawback is the large
computer power needed and it is rather time
consuming.

Acknowledgement.  Thanks to the CHAMP data
centre for providing the data. Thanks to Louise
Sørensen and Henriette Hjorth for data processing.
This paper is a contribution to the SAGRADA
project sponsored by the Natural Science Council of
Denmark
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A simple anisotropic model of the covariance function of
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I. Introduction

The modelling of the gravity and of the geoid at the interface between continents and oceans is
a very difficult challenge, as the gravity field over these regions exhibits large anisotropies. We
consider in this short paper how to build simple 2D anisotropic covariance functions for collocation
purposes. A detailed report is available upon request at BGI (Chenal, 2004).

II. A simple 2D geophysical model of the littoral

We consider a very simple 2D model, where the continental crust (Boillot, 1982) can be

considered as a box invariant by translation along the littoral line (the   

€ 

r 
j axis perpendicular to the

sheet, see Fig. 1)

Fig. 1: 2D-model of the littoral: the sources of the gravity field are located in the box  -H < z < 0 and –L < x  < L
(the water slice being excluded). The gravity anomalies are computed on the dotted line, from left to right.

We also consider 2D sources  (i.e. sources with infinite length along   

€ 

r 
j ). This leads to

 [1]
where 

€ 

ΔgTot;z  is the gravity anomaly along the vertical z, (xi, yi) is the location of each line mass, and x'

is the abscissa coordinate along   

€ 

r 
i .



We suppose that the sources can be either randomly uniformly distributed or following a mesh
of cell size e. In both cases, we use the same absolute numerical value for the masses, but with a sign
uniformly distributed, to reduce computation costs.

Fig. 2: Random distribution of the sources

Fig. 3: Network distribution for the sources

If we consider N realizations (drawings) of the sources, the expectation of the related gravity
anomaly is (Pelat, 2003):

 [2]



Besides, if we note

 [3] and [4]

then the covariance matrix of the gravity anomaly over the N realizations is

 [5]
The most practical way to verify that this matrix is positive definite (as it should be for a

covariance matrix) is to try to decompose it numerically by the Cholesky method (this also apply to the
model matrices, see thereafter).

We have chosen by trials and errors two mathematical models for the anisotropic covariance
function between two any points P and Q, the first one being

 [6]

with the free parameters C0, Ae, Ph and At. The parameter x is the abscissa coordinate (see Fig. 1).
The hyperbolic tangent is introduced to fit the behaviour of the covariance along the diagonal of the
matrix (see thereafter), and the exponential introduces the usual decay with the distance. The second
model is

 [7]

We note that the behaviour in the region over the sea must be equal to the one in the
terrestrial region when the depth of the water is null. (i.e. when b =0).

We give the first model as information, as we rapidly discovered that it is was leading to
inconsistent models of covariance matrices (i.e. non positive definite), and so we focused on the
second model.

To compare the matrix models M1 to the pseudo-experimental covariance matrices M2, we
have chosen, also after trials and errors, to minimize the criterion

 [8]



with respect to C0; Ph, At and Ae. As this criterion is strongly non-linear, the minimization was done by
scanning the whole set of free parameters, which is permitted by their small number NT.

III. Results

We first verified that the expectations of the gravity anomalies were zero over the computation
profile (see Fig. 1) for a sufficient number of drawings (see Fig. 4 below).

Fig. 4: Numerical values of the gravity anomalies expectations for different values of NT  (black line: 100; dotted
green: 1 000; semi-dotted, semi-dashed blue: 5 000; the dotted red: 10 000; small black: 20 000. The x-
coordinates are in km, the y ones in 10-1 mgal. A random distribution of sources was used. A similar result holds
for a network distribution.

We can then consider that the gravity anomalies expectations are centred for NT = 20 000,
and we retained this value for the following computations.

III-a  Results for a network distribution of sources

The "pseudo-experimental" covariance matrix obtained for the network distribution is then as
follows, from formulas [3] and [4]:

Fig. 5: "pseudo-Experimental" (left) and fitted (right) covariance matrices coming from a network of linear sources.
The fit is obtained with C0=3.0 10-8; At=1.93 km; Ph=1.55 km; Ae=6.92 km.

One can note in Fig. 5-Left that, as expected, the variances in the region over the sea (upper
left corner) are lower than in the terrestrial region (lower right corner). The local maxima over the
terrestrial zone correspond to mass anomalies situated just above the gravity anomalies evaluation
points. The best fit for this "pseudo-experimental" matrix, by using formula [7], is shown in Fig. 5-Right.



For easy comparisons, we also defined some cuts in these matrices, as:

Fig. 6: Definition of the cuts over the covariance matrices.

Fig. 7: Comparison over the cuts defined on Fig. 6 of the "pseudo-experimental" (plain lines) and model
covariance matrices (dashed lines) for a network distribution of sources. Left: diagonal (black lines), and section 2
(red lines). Right: antidiagonal (black lines), section 1 (red lines) and section 3 (blue lines).

We can see on Fig. 8 that the fit (hyperbolic tangent) along the diagonal is very acceptable,
except for the undulations caused by shallow network sources. The antidiagonal behaviour is also
quite good.

III-b  Results for a random distribution of sources

Fig. 8: "Pseudo-experimental" (left) and fitted (right) covariance matrices coming from a random distribution of
linear sources. The fit is obtained with C0=1.23 10-8; At=1.43 km; Ph=3.88 km; Ae=8.70 km.



Fig. 9: Comparison over the cuts defined on Fig. 6 of the "experimental" (plain lines) and model covariance
matrices (dashed lines) for a random distribution of sources. Left: diagonal (black lines), and section 2 (red lines).
Right: antidiagonal (black lines), section 1 (red lines) and section 3 (blue lines).

The results for the random distribution of sources are slightly better than for the network
distribution (see Fig. 8 and 9). This is obviously due to the presence of artefacts in the "pseudo-
experimental" data because of the network distribution.

IV. Conclusion

This work is a first step about the modelling of anisotropic covariance function over littoral
regions, and show that a simple model like function [7] can be of interest. The main difficulty will be of
course to take into account real shorelines and the varying water depth of the margins.
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Abstract 
 

From March 1988 to March 2001, 58 absolute gravimetric station determinations have been carried out by 

National Institute of Metrology cooperating with China Seismological Bureau with the NIM―ⅡAbsolute 

Gravimeter at Xiangshan seismostation among which 44 groundwater level observations have been carried out 

simultaneously. This paper studies the mechanism of gravity change at Xiangshan seismostation from various point 

of view. The main conclusions include: (1) the groundwater activity is the main local interferential source, the 

groundwater levels correlate with gravity observation values by segments and its effect on gravity can be corrected 

by a 5th polynomial; (2) the effect of local crustal deformation is very small, thus it can be ignored; (3) the 

earthquake activity can result in short‐term change of the gravity field and its maximum magnitude comes to 

0.333μms-2; (4) the gravity value approximately drops linearly by 0.191μms-2 from 1988 to 2001, the average 

decrease is 0.0147μms-2 per year, and this gravity change belongs to global or regional gravity change. 

Key words: Xiangshan Beijing; absolute gravimetry; nontidal gravity change 

 

Introduction 
 

Since the middle 20th century, nontidal change of gravity field has become one of focal problem 

which scientists pay the most attention to. Local gravity change is mostly related to earthquake 

and volcano activity. The period of the change is very short and it used to be observed by relative 

gravity measurement. There are many achievements about this reportedly. Regional and global 

gravity change is related to the phenomena of plate movement, earth spin, and core rotation. The 

period of the change is long and it is usually observed by absolute gravity measurement. So far, 

there are few achievements about this reportedly. The absolute gravimetric results include not only 

short-term change but also long-term change. To study it not only has important significance for 

the study of earthquake prediction and geodynamics but also has important effect on the 

establishment of the dynamic datum and model of earth gravity field.  

 

1. Measurement and its results 
 

The Xiangshan absolute gravity station is installed in a room of the first floor of west building at 

Xiangshan seismostation. The pier is set up on bedrock and very stable. There is a groundwater 

well which is about more than 3m from the gravity station in another room to the west of the 

station. The Xiangshan seismostation is in a cove to the east of the Xiangshan Park, which locates 

at the east piedmont of West Mountain, Beijing. Here the surroundings are quiet and tasteful, and 

the observation condition is very good.  

Form Mar. 1988 to Mar. 2001, 58 absolute gravity determinations have been carried out by 

                                                        
* Foundation item: The State Natural Science Foundation (49974019).1  
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National Institute of Metrology cooperating with China Seismological Bureau among which 44 

groundwater level determinations have been carried out simultaneously. The measurement interval 

was different greatly: there were 11 determinations in 1988 and 1989 each, there was only once in 

1998, the number of measurement was between 2 and 5 in other year.  

The NIM-Ⅱ free-fall gravimeter which was developed by National Institute of Metrology has 

been used for absolute measurements. The meter has participated in the International Absolute 

Gravimeters Comparison held in 1980, 1985, 1989 and 1997. Its observation results were well 

evaluated in the word and especially its deviation from median of all meters is relatively small in 

1997. In 1995 the meter was partially improved. Its uncertain range was further reduced to 

0.04-0.06μms-2.  

Around 16 consecutive drops are combined to one set, about 30 sets have been generally 

performed on each determination and distributed over 12-24 hours.  

 
Fig.1 Absolute gravity and groundwater level measurements at Xiangshan station, 

Real line is gravity, unit for g-axes is 10-8ms-2; broken line is water level, unit for d axes is meter, 

  g or d is the differences between the observation values and their mean. 

 

In observation the effects of some factors, such as electron circuit delay, the limited light velocity, 

electromagnetic field, vertical level of beams and vacuum level of falling-body cabin etc, were 

corrected or under strict control. The observation results were corrected with solid tide, air 

pressure, gravity vertical gradient and polar motion. The gravity and groundwater level changes 

obtained by the measurements are showed in Fig.1. The smooth curve in Fig.1 represents a fitting 

5th polynomial of the g values. 

 

2. The effect of groundwater activity and its correction 
 

Groundwater activity is a most active factor resulting in gravity nontidal change. Not only its 

effect on the gravity field is large and ubiquitous, but also water level change is fast and the 

relation between the level and gravity is complicated. However, for the studies of many 

geoscience problems, it is only an interferential factor and must be separated from observation 

data. The ground water can be divided into many types, such as vadose water, phreatic water, 

confined water, fissure water and karstic water etc. Different types of groundwater have different 

effects on the gravity value of observation station. The phreatic water of them has a great effect on 

gravity field because it is free aquifer. Above all, we study what type of groundwater the 
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Xiangshan well water level represents.  

In order to find an annual law of water level changes, Fig.2 is drawn, where d-axes is water level, 

m-axes is measured time overlooked years. It is clear that from January till May the water levels 

are low, by June the level begins to rise, in August and September they reach their maximum value, 

then, it begins to drop. This is the typical character of phreatic water changes. It originates from 

the effects of rainfall and evaporation. Some relatively big fluctuations in the Fig.2 result from 

difference between years; in other words, it results from long-term change of groundwater level. 

For example, some obvious lows appear in the years of 1993 and 1994 when the groundwater 

levels are generally on the low side (see Fig.1). 

Fig.2  The characters of yearly changes of 

Well water level at Xiangshan station 

 d is the same with Fig.1 

 

In many cases there lies a linear relation between phreatic water changes and their gravity effects, 

for example, there is dg δρδ42=)  in North China Plain (Jia et al 1983). However, from Fig.1 it 

can be roughly seen that the relation in Xiangshan point is more complicated. It seems that the 

gravity changes and the water level changes both represent a tendency to long-term decrease, but 

the latter also occurred a bigger jump in 1994. In order to prospect for the relation between both of 

them Fig.3 is drawn. The fitting curve in Fig.3 is a 5th polynomial, its equation is 

5432 0318.01672.06482.05211.25079.61793.2ˆ dddddg +−−++−=      (1) 

Fig.3 and equation (1) show the curved correlation between groundwater levels and gravity values. 

In the two segments where d is -2.68~-1.03(low water level) and 2.87~5.05(high water level) 

respectively, gravity values negatively correlate with water levels, but in the segment where d is 

–1.03~2.87(medium water level), both of them have positive correlation. The bends at the both 

ends result from the cut of gravity data, a mathematical factor, so it has no physical meaning and it 

will not be considered. From the gravitational formula it can be known that if a water stratum is 

above gravity station, its gravity effect negatively correlates with the level change, and otherwise, 

the gravity effect positively correlates with one. Combining the characters of topography and 

stratum as well as the conditions of water source around Xiangshan station, the phenomenon of 

correlation in segments can be explained. 
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Fig.3 The relation between gravity and well water level observation values  

 g and d are the same with Fig.1 and Fig.2. 

 

Because the observation station is located at the foot of east of West Mountains, the phreatic 

aquifer near the station and in its east (PANE) is lower than the pier, but the phreatic aquifer of the 

western mountainous regions (PAWM) is higher than the pier. Generally the gravity effect of 

PANE is bigger than PAWM, thus it comes into being that the gravity effect positively correlates 

with the water level change in the medium level segment. After groundwater level continually 

drops to the low segment, the water contained in PANE is nearly exhausted; whereas the water in 

PAWM is relatively abundant because of the supply of water from the mountain. Especially, when 

the groundwater level would be reaching its nadir in 1993~1994, an artificial pond which is about 

200m in the west of the observation station and stores water 500m3 was built, it provides more 

water for PAWM. Now, PAWM showed so main effect on gravity that the positive correlation in 

the low level segment comes into being. As for high water levels，they all occur in rainy season. 

Here there is plenty more surface water, but the flow velocity in mountains is bigger than plain, 

therefore PANE could keep being saturated status(the level didn't almost change) and the level of 

PAWM could change, and thus the negative correlation in high level segment comes into being. 

The quantitative calculation by formula (1) shows that if effective porosity of rock stratum and 

well water level change are the same, the gravity effects of each segment at Xiangshan station are 

in turn (from low to high) 21%, 55%, 42% of that at most stations in North China Plain( Jia, et al. 

1983). This further proves that the aquifers in east and west of the observation station have a 

function of mutual counteraction and the effect of the flat is greater than the mountain. According 

to the prospecting on the spot the dip angle of massif rock strata is 70°,the penetration speed of 

the groundwater will be fast, so that it is possible that the phreatic aquifer in different area controls 

the well water level in different time. In addition from Fig.3 it also can be seen that the 

correlativity in low and high segments is weaker than medium. This indicates that the effects of 

other factors, such as surface water, earthquake activity, are large. 

Fig.4 is mapped after the observation values in Fig.1 are corrected with groundwater according to 

the equation (1). The magnitude of gravity changes becomes smaller and the fitting polynomial 

curve becomes straighter when comparison with those in Fig.1. From the discussion in the 4th and 

5th part of this paper it can be known that the gravity effect of earthquake events and the long-term 

change of gravity field are more prominent and reasonable, which proves that the groundwater 

correction is valid. 
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Fig.4 The gravity changes corrected with groundwater 

Unit for g-axes: 10-8ms-2; the numbers on the top are order number of gravity effects from earthquakes. 

 

3. The gravity effect of local crustal deformation 
 

This part discusses the effect of vertical displacement of the observation pier and the gravitational 

effect of the crustal deformation around the observation station. 

In order to monitor the stability of the bedrock, the Beijing Surveying and Mapping Institute 

distributes a 50km measuring line in northwest Beijing. It includes more than 10 bedrock 

observation stations, such as Xiangshan, Yuyuantan etc, and 4 times of primary leveling were 

carried out in 1989, 1992, 1995 and 1998. The results show that the changes of elevation are only 

few mm, very small, and not continuous. So the gravity effect of elevation changes can be 

neglected. 

At the same time, the Beijing Surveying and Mapping Institute also carried out subsidence 

observation in the urban area of Beijing and founded two local subsidence areas. One’s center is 

about 22km north by east 50°from the Xiangshan station and its maximum subsidence is 385mm. 

Another one’s center is about 44km south by east 15°from the Xiangshan station and its 

maximum subsidence is 363mm. When the subsidence area divided into 7 lays, the linear 

integration method (Talwani et al 1960, Lio, et al. 2002) is used to calculate their effects on 

Xiangshan absolute station. Their gravity effects are 0.13 and 0.04nms-2 respectively, which are 

very small.  

In a word, the gravity changes at Xiangshan station absolutely don't result from local crustal 

deformation. 

 

4. The gravity changes resulting from earthquake activity 
 

The interference of local surroundings factors is removed in the gravity changes in Fig.4. So 

except the residual measurement errors they should be related to local tectonic activities or the 

geosciences phenomena in wider range. It is obvious that the gravity changes in Fig.4 can be 

divided into two parts: one part is a long-term change represented by smooth curve; another part is 

a short-term change described by the broken line. In this section the latter will be discussed. 

The average uncertain region of 58 absolute gravity determinations is ±0.063μms-2. When  the 

smooth curve is taken as reference and ±0.063 is taken as limit (confidence interval), two 

parallel curves are dropped in Fig.4. The middle part between them is an uncertainty range, and 
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the outside of them is viewed as a region produced the effect of tectonic activity. 

Tab.1 provides the earthquakes Ms≥5.0 which occur within 300km around the Xiangshan station 

since 1982, and together there are 9 ones. They can be divided into 5 groups according to their 

occurring time. (See 2nd column of Tab.1.). It is interesting that we can find corresponding gravity 

changes with them one by one in Fig.4, which are also made signs from 1 to 5 on the top of that. 

The gravity changes usually appear earlier than earthquakes about 1-2 years, that indicates the 

former result from gestation of the latter, and so the gravity changes are named an anomaly for 

portents of earthquake.  

 

Table.1      The earthquakes Ms≥5.0 within 300km around Xiangshan station 
Order 

number 
Group 

Number 
Time Ms L φ Place 

1 1 1989.10.18 5.7 113.88 39.94 Datong—
Yanggao 

2 1 1989.10.19 5.9 113.91 39.92 Datong—
Yanggao 

3 1 1989.10.19 5.5 113.87 39.92 Datong—
Yanggao 

4 2 1991.3.26 5.8 113.80 40.00 Datong—
Yanggao 

5 2 1991.5.30 5.1 118.20 39.50 Fengnan 

6 3 1995.10.6 5.0 118.50 39.80 Guye 

7 4 1998.1.10 6.2 114.30 41.10 Shangyi 

8 5 1999.3.11 5.6 114.60 41.20 Zhangbei 

9 5 1999.11.1 5.6 113.90 39.80 Hunyuan—
Yangyuan 

 

It looks as if the anomalies of portents have the following characteristics: (1) Every group 

anomaly contains process: the gravity value first rises, then drops, and then the earthquake occurs; 

the anomaly of serial number 2 also includes two rising-dropping processes, witch may be caused 

by 2 earthquakes happened respectively in the east and west of Xiangshang station. (2) The 

magnitude of the anomalies is related to an intensity of earthquake: the earthquake magnitudes of 

the 2nd and 4th group are big, so the anomaly magnitudes are also big (up to 0.333μms-2); the 

earthquake magnitude of the 3rd group is the smallest, so the anomaly magnitude is also the 

smallest. (3) The effects of earthquake events between which time interval is relatively short on 

gravity field mutually spliced. The first group of earthquakes is an earthquake swarm and the 

magnitudes are all relatively big. However, its anomaly form is quite incomplete. The incomplete 

rising segment is caused by truncation data. The short and small dropping segment results from 

interference of the 2nd group of earthquakes. Also the short and small rising segment of the 2nd 

group results from the interference of the dropping segment of the1st group, i.e. the dropping 

segment of the 1st group and the rising segment of the 2nd group mutually superpose. 

 

5. The long-term changes of the earth gravity field 
 

The smooth curve in Fig.4 is a 5th polynomial. Its equation is: 

5432 0002.00030.00187.01980.09786.17090.1~ tttttg −−+−−=        (2) 
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Where g~  is the long-term change of gravity, and t is the time represented by subtracting 

1992.8890 from the year corresponding to g~  (the month and day corresponding to g~  are 

reduced to decimal fraction which takes year as unit). The curve in Fig.4 shows the long-term drop 

process of gravity and this process approximate to linearity. Using Equation (2) we obtained that 

the gravity decreases by 0.191μms-2 altogether from March 1988 to March 2001 and the average 

decrease is 0.0147μms-2 per year. This result is consistent with people’s theory estimate of 

gravity long-term change. 

Such long-term changes of gravity field have local or global significance. The chief purpose of 

International Absolute Gravity Basestation Network is monitoring the global gravity long-term 

changes, especially the gravity changes caused by earth spin and earth core rotation (Boedecker et 

al 1986, 1993). The observation result at Xiangshan will make contribution to this worldwide 

concerned study. The author will also further study the mechanism of gravity long-term changes at 

Xiangshan when there are more results published.  

This paper is in agreement with JILAG-3 results (Torge et al. 1999, Jia et al. 1998). 
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Abstract
The purpose of this work is studying the (possible) relation between the
distribution of the outliers found in the European quasi geoid data set and the
magnitude of the slope (gradient) in that points, either in the same signal or in
the topographic heights’ signal. As we will see, this relation is highlighted by a
Montecarlo method. A particular attention has been paid to the fact that, in a so
wide area, the east-west step (used to calculate the gradient magnitude in the
gridded data) has to be adapted to the changing curvature of the ellipsoid.

A definition of “Outlier”
An intuitive definition of outlier (taken from [14]) can be: “an observation that stands so
away from the other ones that it leads to suspect that it could have been generated by a
different mechanism” (another insight is presented also in [2]).
Therefore the “evidence” of the deviation presented by the erroneous data is the
indicator of their probable incompatibility with the remaining data. Historically the error
rejection was performed by people who were responsible of data preprocessing:
watching the globality, they were able to identify the suspected minority. Nowadays an
automatic procedure is desirable.
A deep exam of anomalous data is imposed by the awareness that just one outlier can
“pollute” a big set of measures.

Introduction
In IGeS archives, several geoid data sets are collected. For the european area
(North=77°, South=25°, East=67.5°, West=-35°), there are available two kinds of data:
QuasiGeoid and Geoid (see for reference [9],[10],[26],[27]). Since a new project for the
European Geoid re-computation is under definition, it was considered as particularly
interesting to examine the old geoid data, chasing for outliers. We have then decided to
apply our own software (hereafter described) to the two datasets, finding that about 90%
of the outliers in each data set are common. So we decided to focus our attention only
on the QuasiGeoid.
The software “r.outdet”, used for the current outlier rejection, is an evolution of
“r.outldetect”, developed a few years ago. Both the modules were devoleped by us in
the last years, exploiting also interesting routines offered in [19]. The actual release
extends the capabilities of the open source GIS G.R.A.S.S., a software environment full
of tools for processing spatial distributed data of any kind.
The software’s core method of processing is placed in the analysis of every point of the
data set, around which a moving window is opened. The size of this window is user-
defined, and determines how many surrounding points will be involved in the test; the
target is to decide whether the central point is an outlier.
More precisely: for a rectangular window of side (2k+1)δx x (2k+1)δy (of course it
should be an odd number, while k is any integer larger than zero), when the data are
gridded, there are

Nk = (2k+1)2 – 1 = 4k (k+1)



observations hobs,i around the central hobs. With an appropriate interpolation model, and
using only the surrounding values, the central value ĥ  is estimated and compared with
the central observation hobs, in order to implement a statistical test on the hypothesis

H0: E[∆h] = E[ ĥ - hobs] = 0

The statistics used to perform this test is obtained by a Least Square Estimation
approach for the coefficients of a polynomial that constitutes the interpolation model.
For example, if the user chooses the constant function as local model (see [15]), there is
only one coefficient to estimate:

hmodel(x,y) = a0

If every observation hobs,i is assumed, as independent, with normal distribution (mean a0

and variance 2
0 σ ), we have

] N /  , [N  ~   h
N
1

  ˆ 2
00

N

1
,0 k

i
ioss

k

aa
k

σ∑
=

=

A correct estimator of 2
0 σ  is

2
)1  (N

2
0

N

1

2
0,

2
0 1N

   ~ )ˆh(
1N

1
  ˆ -

ki
ioss

k
k

k

a χ
−

−
−

= ∑
=

σ
σ

so, since
] )N / 1  (1  ,0 [N  ~   ˆ h h  2

00 koss a +−=∆ σ
we have that the test is performed by

1) - (N
2

1  N0

 t 

1  N

Z
 ~ 

ˆ

h
1N

N
k

k

-k

-k

k =
χ

∆
+ σ

Remark
Indeed real errors with respect to simple models like these are not expected to be neither
independent nor normally distributed. The experience, however, says that traditional
tests do tend to be conservative, i.e. to identify as outliers data that could not be so with
respect to more realistic distributions. Since outliers as such are not “false” data but just
data with a different statistical signature and have to be more closely analyzed, we think
that the proposed procedure is still acceptable.
See [4] to read about another conservative approach to outlier detection, while the
subjective nature of outlier rejection procedures is in [7].

The outlier rejection strategy

Actually, our outlier rejection is based on the following polynomials, well known in
literature on approximation and reliability, that are a straightforward generalization of
the above elementary example.

• Bilinear (4 coefficients):
hbil(x,y) = a0 + a1⋅x + a2⋅y + a3⋅xy

• Bicubic (16 coefficients):
hbic(x,y) = a0 + a1⋅x + a2 ⋅y + a3⋅xy + a4 ⋅x2 + a5⋅y2 + a6⋅x2y + a7 ⋅xy2 + a8⋅x2y2 +

 + a9⋅x3 + a10⋅y3 + a11⋅xy3 + a12⋅x3y + a13⋅x2y3 + a14⋅x3y2 + a15⋅x3y3



Since it is important to keep a high overdetermination, for the first case we chose a
window size of 3x3, while for the second one a size of 7x7.
The test procedure is then performed by observing that, in both cases,

ĥ = 0â

Since 0â , in the case of gridded data, is still given by
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for the bilinear interpolator and by a more complicated formula – coming from the Least
Square Adjustment – for the bicubic interpolator, by exploiting a standard testing
theory, we can write
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where q depends on the number of unknown parameters (in other words, the degree of
the polynomials plus 1) and the size of the moving window. It can be found that for both
the methods (bilinear with 3x3 and bicubic with 7x7) the value of q is 1/8.
Therefore the test statistics applies (see for instance [3])
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where tν denotes the student’s t distribution with ν degrees of freedom (the number of
observations reduced by the number of unknown parameters). For the bilinear case
(with window size 3) ν=8-4=4, while for the bicubic case (window size 7) ν=48-16=32.

In table 1 there are the results, according to different significance levels α.
It shows the number of suspected outliers for the present test, to be compared with the
number of suspected outliers expected because we fix a certain α risk of the first kind
(for a normal distribution, given α, we expect αN data to be suspected).
The results point to a significant non normality of the data; we have just seen that in the
3x3-bilinear interpolation the redundancy (number of degrees of freedom, ν) is 4 while
in the 7x7-bicubic interpolation is 32; therefore, with α=1%, the corresponding t values
are 4.60 and 2.75. This explains why we find more outliers in the bicubic case.
The choice of the α value to be used (in our case α=0.1%) has been performed by
considering that the suspected outliers should be in any way more than the expected, but
not too many.

Method size Alfa “Outliers”
(out of 127920 data)

Expected “Outliers”
(out of 127920 data)

Bicubic 7x7 5% 15061 6396

Bicubic 7x7 1% 2290 1279

Bicubic 7x7 0.1% 179 128

Bicubic 7x7 0.05% 79 64

Bilinear 3x3 1% 290 1279

Bilinear 3x3 0.1% 17 128

Table 1



Focusing on the 179 outliers found with the third option, their distribution is shown in
figure 1; figure 2, instead, shows them against the corrected gradient of the signal.

Figure 1 – 179 outliers against the QuasiGeoid signal

Figure 2 – 179 outliers against the gradient magnitude of the QuasiGeoid signal

It should be noted that the corrected gradient is computed by the following formula
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where
G(ϕ ,λ) means the geoid signal evaluated in (ϕ ,λ);
* means  approximately corrected according to the local curvature of the ellipsoidal
coordinate lines;
GNS = 1/(8 ϕ∆ ) ⋅
 {G(ϕ i-1,λκ−1)+2G(ϕ i-1,λκ)+G(ϕ i-1,λκ+1)–G(ϕ i+1,λκ−1)–2G(ϕ i,λκ)–G(ϕ i+1,λκ+1)}

GEW = 1/(8 λ∆ ) ⋅
 {G(ϕ i-1,λκ+1)+2G(ϕ i,λκ+1)+G(ϕ i+1,λκ+1)–G(ϕ i-1,λκ−1)–2G(ϕ i,λκ−1)–G(ϕ i+1,λκ−1)}



It’s worth to investigate what kind (if any) of relationship there is between the location
of the “outliers” and the gradient magnitude. At first sight, the geographical distribution
of the outliers does not follow any kind of criterion based on the slope of the geoid. One
way to have a confirmation of this statement is to proceed with a Montecarlo Method
(for reference, [13]), by creating a suitable index that shows the general behaviour of the
gradient magnitude against the behaviour of the same value when applied to the outliers.
More precisely, we used the index
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where in this case number (#) of outliers is 179, while k (the repetition index) runs from
1 to 10000 and every point Pi is sampled from a uniform distribution on the knots of the
grid. As it is evident, the index increases when points have systematically higher and
higher gradient magnitude. The reader could ask why we did not choose a simpler
expression, such as for instance
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The reason stands in the limit of the “double precision” representation of float numbers:
a computer cannot store, in its memory, big numbers having an arbitrary size. Using the
logarithmic mapping, instead, we reduce the amplitude of the sum, without loosing any
information because an increasing monotonic map preserves the ordering of the values.
More over, adding one is required to make every addendum positive. In any way, since
the boot-strap method applied here works with any distribution, we can in principle use
any function.

The frequency distribution of Φ is compared with the single value
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where {P*
i} denotes the set of points where the outliers were found.

As it can be seen in figures 3a, 3b, 3c, 3d, the index Φ* does not seem to be correlated
with the gradient magnitude (in figures 3c and 3d it is close to the average of the
empirical distribution) or slightly correlated, but in the opposite sense we expected (in
figures 3a and 3b it is on the left, as if a smooth signal could lead to find more outliers).



Figure 3a – Φ* with: bicubic interpolation, 7x7 window size, significance level 0.05%

Figure 3b – Φ* with: bicubic interpolation, 7x7 window size, significance level 0.1%



Figure 3c – Φ* with: bicubic interpolation, 7x7 window size, significance level 5%

Figure 3d – Φ* with: bilinear interpolation, 3x3 window size, significance level 0.1%



Going deeper into the rejection criterion

This apparent lack of correlation, contrary to our intuition, can be studied more deeply.
In fact we suspect that our “outliers” fall into two cathegories; in one we have outliers
with large absolute residuals (we can call these “relevant outliers”), which we can
consider as true outliers, in the other we have outliers just because the 0ˆ σ  resulting
from the adjustment of the bicubic surface to the surrounding values is too small.
Then we decided that we were more interested in looking into the relation between
relevant outliers and inclination of the geoid. So, after inspecting the histogram of the
“modulus” of the outliers (see figure 4), we decided to compare the distribution of the Φ
index with the value of Φ for the most relevant ones. More precisely, we compared the
value of Φ for the 10 “extreme outliers” (characterized by largest absolute residuals)
with the distribution of Φ for 10 points randomly selected, on a 10000 sample.
The result is shown in figure 5, where finally the exceptionality of the index Φ for the
outliers is quite evident.

This has convinced us that the pure statistical rejection criterion should be modified; as
a matter of fact the other 169 outliers have a smaller residual absolute value and they are
seen as outliers by the testing procedure only because the bicubic model was
particularly good for that specific window.
This is also clarified by looking (figure 6) at the distribution of 0ˆ σ  on the 179 suspected
where a relative increase of the frequencies is verified above the threshold of 15 cm and
in fact our extreme outliers are all above 20 cm.
All that points towards the need of implementing a new 2

0 σ  estimator based on an
average value in the area. In any way, in order to confirm our guess that the 10 “largest”
outliers are really related to a physical phenomenon, we have investigated also their
connection to the gradient of the undelying topographic surface, giving some graphical
representations in figures 7, 8, 9, 10.
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Figure 4 – Histogram of absolute residuals limited to the 179 points classified as outlier



Figure 5 – ΦΦ * for the 10 extreme outliers
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Figure 6 – Histogram of 0ˆ σ  limited to the 179 points classified as outlier



Conclusions

Our first conclusion is that the software implemented for the outlier rejection has to be
improved, regarding to the 2

0 σ  estimation, which has to be estimated more specifically
to avoid the detection of an unreasonable number of “irrelevant outliers”. By the way,
the Monte Carlo method, proposed to compare pointwise quantities (like outliers) with
area distributed fields, seems to give significant results.
In particular, the relation, between the relevant outliers and large values of geoid
gradients, is well illustrated in figure 8: most of the relevant outliers fall in areas
characterized by high gradient magnitude and a complicated pattern.
Another conclusion is that these outliers do not seem to be so much related to
mountainous areas, but rather to coastal areas with sudden jumps of sea floor. This
points towards a good functioning of our terrain correction algorithm in rugged areas,
but a poor functioning in coastal areas with depth contrasts, as anybody who has
computed a gravimetric geoid knows by experience.

Figure 7 – 10 outliers against the QuasiGeoid signal

Figure 8 – 10 outliers against the gradient magnitude of the QuasiGeoid signal



Figure 9 – 10 outliers against the Topographic heights

Figure 10 – 10 outliers against the gradient magnitude of the Topographic heights
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 Abstract 

The purpose of this work is to propose a reliable method to detect outliers, 
continuing the work done in a previous article. The previous work was affected 
by a serious defect related to a rather unstable local estimate of a dispersion 
index. This paper relies on a robust estimation of a relevant parameter that, 
before being used for testing the data, is processed with a low-pass filter. The 
many advantages, obtained in this way, are highlighted in an experiment on a 
real D.T.M. dataset. 

 
Introduction 
The adopted method for outlier rejection in a gridded points data set is the following 
one: to validate the value u(tk), a window [whose dimension is (2s+1)δx x (2s+1)δy] is 
opened around the position tk; the observation points tj falling in the window [whose 
number is Ns = (2s+1)2 – 1 = 4s (s+1)] are considered in order to estimate the 
coefficients of an interpolating model. With the interpolating model (which, we 
underline, is tuned only on the surrounding points), an estimated value of u(tk) is 
compared with the observed u(tk) itself, leading to test the hypothesis (with significance 
level α) 

H0: E[ û (tk) – u(tk)] = 0  . 
 
If the local model is a constant function, there is only one coefficient to estimate: û (tk) 
itself. In the past we proposed fitting polinomials with coefficients estimated by a 
Minimum Least Square criterion. As it is known (see [18]), we found that these 
methods have many disadvantages; in particular they are unreliable when there are more 
outliers in the window and in certain cases they are too much sensitive. 
The enhanced method we propose now is robust against outliers, because we use 

û (tk) = 
kj

Median
≠

 {u(tj)}  ; 

therefore tk is considered an outlier if 
|Zemp(tk)| > Zα/2   , 

where 
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while Zα/2 is the abscissa value of the standard gaussian distribution, corresponding to a 
right tail of area α/2.1 
 
The estimated σ of [ û (tk) – u(tk)] is typical of robust estimation literature (cfr. [8], [6] 
and [17]). In our conservative approach the normal (gaussian) approximation is used, 
but – as discussed in [18] – this does not represent a problem. 
 
It should be noted that Zemp(tk), depends on the size of the moving window. Therefore 
an algorhytm to find an acceptable dimension for the windows has been developed, too. 
The size of the window depends essentialy on s, since δx and δy are led by the kind of 
acquisition process and the type of the cartographic projection of the area to which the 
points belong. 
A good choice of s can be made by analyzing the quality of the interpolation model on a 
global scale. We performed this analysis with the index “global MAE”: 

gMAE(s) = ∑ −
k

kk tutu
N

)(ˆ)(
1   . 

Its behaviour (that depends on s since û (tk) comes from the median of values that are 
enclosed in the moving window) is this: starting from s=1, gMAE decreases until, for a 
value s=s*, it attains the minimum value gMAEmin; for s>s*, gMAE increases 
indefinitely with s. Therefore this optimal value s* can also be used for the computation 
of every local MAEk. 
Though we are not able to justify this result, we found experimentally that, when data 
are regularly gridded, then s*=1 has always been the optimal value (gMAE is 
minimized for a window of size 3x3).  
 
Inadequacy of the simple local MAE calculated as above 
When the points tj, around tk , are well fitted by their median (better than the mean index 
for not being “outlier-prone”  - see also [1], [2] and [3]), then a small difference 
between u(tk) and its estimation leads to consider tk an outlier. 
For instance, consider 8 points in a grid with exactly the same height and a central point 
with 5 cm height difference; of course, since the MAE in this case is exactly zero, this 
point will be flagged as an outlier. We notice already that this can happen exactly 
because here and there 8 points can really bear similar values; when we increase the 
number of surrounding points, this effect could become milder. 
In any way the formula for outlier rejection needs a revision, in order to label as outliers 
only points whose values are sensibly different from their estimations.  
Looking back at 

Zemp(tk) = 
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we find that, to decrease Zemp(tk), under equal conditions, the value of local MAEk 
should be increased, avoiding critical situations like that described above. This 

                                                           
1 A partial demonstration of the above formulae is the asymptotic behaviour of Zemp: when N ∞, Mean 
Absolute Error (MAE) is close to Standard Deviation (σ) and Median (MD) is close to Mean (µ). So, 

having defined y=u(tk)-MD, we discover that y=N[0,σ2], µ[|y|]= (2/π)1/2 σ and therefore Z
MAE

y

k

≈

2

π
. 



operation must be accomplished with caution, since the rule that is going to be 
introduced has to be valid under fairly general conditions, not case by case. 
We decided that a suitable way to “modulate” the local MAEk is to smooth it, as if it 
were a signal. From the general theory of signals, when a signal is smoothed its 
minimum increases, its maximum decreases, its mean is preserved and the variance 
decreseases. Moreover, these behaviours are stressed as far as the size of the moving 
average window increases. 
 
The smoothing strategy 
A simple way to smooth our “MAE signal” is using a traditional bi-dimensional moving 
average on a window of size (2s+1)x(2s+1). It is known that when a matrix M (nr)x(nc) 
is convolved with a kernel K (2s+1)x(2s+1), the result is a matrix R (nr+2s)x(nc+2s) 
because M is padded with a frame of zeros for s times. But the significant values of the 
operation are in the submatrix S (nr-s)x(nc-s) of M, since only the most internal values 
are calculated with all the elements covered by K. Naturally the choice of the dimension 
s in this case is very important. 
In the next paragraph we show some experiments with real data from a D.T.M. that 
have given us some hints on this choice. 
On the other hand at least two two things are clear: altough an optimal window to 
estimate the central value is often of dimension 3x3, yet the corresponding MAE 
(computed on that window only) has a by far too large probability of having a too small 
value, thus generating false outliers. On the other side, if we used the average of the 
local MAEs over the whole data area that would be too large to detect real outliers. So 
we decided to base our choice on experiments. 
 
The experiment 
In order to test the quality of the method of outlier rejection and to calibrate the one on 
which local MAEs have to be averaged, we chose an area (in the northern part of Italy) 
where we have a Digital Terrain Model characterized by a flat zone and a mountainous 
one. There is also a lake (Lake of Como) whose form is a “Y” upside down. The 
description of the region is the following (in degrees with their decimals): 
north:      46.1326129 
south:      45.491 
east:       9.2928936 
west:       9.043 
e-w resol:  0.00277659556 
n-s resol:  0.00194428152 
therefore the matrix M is composed by 330 rows and 90 columns, as shown in figure 1. 



 
Figure 1 – The area of study 

An outlier rejection performed with our method on the above dataset (with significance 
level of α=0.1%) and using local MAE indexes without any smoothing, leads to 
identifying 40 outliers. 
It should be noted that, in order to avoid border effects, a frame of width 9 all around 
the boundary has been dropped in every case because the largest kernel is 19x19 (so 
s=9) and we wanted to have results capable of overlapping. 
So instead of validating 330x90=29700 points, we effectively validated 312x72=22464 
points. 
 
By smoothing the local MAE with a simple kernel 3x3, the number of outliers found is 
1; this shows that smoothing in a so restricted area provoked an increasing of the local 
MAE (in every point) and therefore to consider good points the ones previously labelled 
as outliers. Using wider and wider kernels, the number of found outliers goes around 50 
(as can be seen in the table 1). This can lead to think that this is the reasonable number 
of outliers. 
 

MAE 
smoothing’s 

Window 

# 
Outliers

Min 
MAE

Max 
MAE

Mean 
MAE 

Var 
MAE 

None 40 0 210,88 32,69 1306,8 
3x3 1 0 162,06 32,69 1167,7 
7x7 30 0 117,12 32,69 1023,4 

11x11 46 0,535 101,665 32,68 945,9 
15x15 48 0,551 94,96 32,64 900,1 

Table 1 – Interesting indicators with different smoothing windows 

Another way of perceive the process is by plotting an histogram of the entire MAE 
dataset in the different cases. 
In figure 2 it can be seen that – smoothing with a wider and wider mask – the number of 
very small MAEs decreases while the number of MAE around the mean increases. 
 



None

3x3

7x7

11x11

15x15

Figure 2 – Histogram of MAE dataset in different cases 
 
 

 
Figure 3 – Relevant points according to two approaches 

 



As it can be seen from Figure 3 (where outliers according to original MAE are plotted 
with red asterisks, outliers according to mask 9x9 with smoothed MAE are plotted with 
yellow, and the 7 outliers in common with blue boxes), by smoothing the MAE, we are 
able to find “true” outliers (for example very interesting the row of 11 outliers in the 
south west, which gives the impression of some systematic error) and ignore many 
“false” ones, for example those that are in the flat zone. 
 
The smoothing process of the local MAEs produces a positive effect that comes from 
the combination of two effects: the increasing of the minimum MAE (that leads to 
consider good points the ones that with calculated MAE were considered outlier, 
because of their small deviation from the estimation) and the decreasing of the 
maximum MAE (that leads to consider outlier points some that previously were 
considered good ones). The resulting effect is that a reasonable number of outliers is 
detected by a reliable process. This insight is confirmed by figure 4 (and figure 5, that is 
a zoom of figure 4), where – in a diagram local MAE vs absolute differences – with red 
circles (o) are shown outliers according to original MAE, while with blue crosses (x) are 
shown outliers according to smoothed MAE with mask 9x9. 
Indeed, circles with very low MAEs and very low absolute differences2 are ignored by 
smoothing the MAE; also circles with very high local MAE and very high absolute 
differences are not considered outlier, according to the enhanced process. The 7 outliers 
in common are perceivable because each of the 7 circles has its own cross on the same 
value of absolute difference. 
It can also be noted that, in a gridded dataset, it is always Ns=8. So, having fixed 
α=0.1%, is easy to calculate the gradient of the dotted line that defines the limit over 
which we find outliers: since the theoretic value of Z is 2.5758, 
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In conclusion, the simple idea of smoothing the MAE is a powerful tool to detect 
outliers as described above. The smoothing window can be fixed to dimension 9x9 
altough close by values would not dramatically affect the result. There is still work left 
to conceive a more general method suitable for not gridded datasets. 
 

                                                           
2 With the term “absolute difference” we mean the absolute value resulting from the difference between 
the value of the observed point and its estimation (the median of the surrounding points). 
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Figure 4 – Relevant points according to two approaches 
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A COMPUTER PROGRAM FOR AN ADJUSTMENT OF COMBINED
GPS/LEVELLING/GEOID NETWORKS: CASE OF STUDY: NORTH OF ALGERIA
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Arzew- 31200- Algeria. Phone: 00 213-41-47-22-17, Fax : 00 213-41-47-36-65,
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Abstract: The combined use of global positioning system (GPS), levelling and geoid height
information has been a key procedure in various geodetic applications and provides at the same time a
very attractive evaluation scheme for the accuracy of gravimetric geoid models. The main goal of this
paper is to propose a tool of adjustment of combined GPS/Levelling/Geoid networks. For this kind of
adjustment, generally, two main types of unknowns are estimated; the gravimetric geoid accuracy and
2D spatial field that describe all the datum/systematic distortions between the available height data
sets. Accordingly, two modelling alternatives for the correction field are programmed, namely a pure
deterministic parametric model, and a hybrid deterministic and stochastic model.

In this context, and for a first attempt, a Fortran program has been developed translating in application
this methodology using the Hirvonen model as analytic covariance function of the reduced signals and
the four parameter model to describe all possible datum inconsistencies and others systematic effects
between the available height data sets. The necessary data used to test this program, the adopted
methodology, the computation procedure, and the obtained results will be presented.

Key words: Covariance function, Hybrid deterministic and stochastic model, levelling.

1. Introduction

As an important result of development in high technology, satellite based positioning system has
become to use in geodesy and surveying professions. These developments made the measurement
works more accurate, more practical and more economic.

In practice, a high accurate gravimetrically determined geoid is often computed by using the technical
Remove-Restore. Such geoid can have a very high resolution and very high relative accuracy in the
sense of the difference of the geoidal height. However, its absolute accuracy in the sense of the
determined geoidal height itself, is currently very poor due to the systematic errors caused by the
difference in reference systems, the long wave-length errors of the geopotential model used as
reference in the computation of the geoid, the biases existing in the gravity data and in the digital
terrain model (DTM), etc.

In the other hand, we can now measure by means of the space techniques, on land through a
combination of GPS positioning and precise Levelling and at sea through satellite altimetry, the geoid
on some points on the earth’s surface with very high absolute and relative accuracy, especially when
the GPS coordinates have been attached directly to VLBI or SLR stations.

Consequently, the gravity solution, which has very high resolution and relative accuracy but poor
absolute accuracy, and the GPS levelling solution, which has poor resolution but very high accuracy
can be combined in the same adjustment (Jiang & al., 1996).

However, the fitting the gravimetric geoid to a set of GPS levelling points by using the Least Squares
adjustment permits to estimate the residuals iv  which are traditionally taken as the final external
indication of the network accuracy. The main problem under this method is that the iv  terms will
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contain a combined amount of GPS, levelling and geoid random errors that need to be separated into
individual components for a more reliable geoid assessment.

The objective of this paper is to propose a tool of adjustment of combined GPS/ Levelling/ Geoid
networks. For this purpose, two modelling alternatives for the correction field are programmed namely
a pure deterministic parametric model, and a hybrid deterministic and stochastic model (Kotsakis & al.
1999). The program developed in this framework allows to estimate the gravimetric geoid accuracy
and to compute the 2D spatial field parameters that describe all the datum/systematic distortions
between the available height data sets.

2. Mathematical model for the combined adjustment

In this section, the theory of general adjustment model will be reviewed briefly in order to describe the
methodology adopted in the setting of this work. For detailed aspects of combined adjustment of
different heights data sets can be found in Kotsakis & al. (1999).

Let us assume that at each point iP of a test network composed the m points, we have a triplet of height
observations )N ,H ,h( iii , or equivalently one synthetic observation:

N
i

H
i

h
ii

T
iiiii vvvsx.aNHhl −−++=−−=   (1)

where ih , iH  and iN  denote the available observed values for the GPS, orthometric and geoid height
respectively. The iv  terms describe the zero mean random errors, for which a second-order stochastic
model is available:

{ } h
2
hh

T
hh QCvvE σ==  , { } H
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T
HH QCvvE σ==   and    { } N

2
NN

T
NN QCvvE σ==               (2)

and hQ , HQ and NQ  denote the cofactor matrices.

For the orthometric height, the covariance matrix HC  is determined from the adjustment of the
levelling network. In the same way, hC  can be computed from the adjustment of the GPS surveys
performed at the levelled benchmarks. However, the covariance matrix NC  is determined by means of
the error propagation from the original noisy data used in the geoid solution (Kotsakis & al., 1999).

By means the matrix notation, the equation (1) can be written under the form:

BvsAXL ++=                                               (3)

where  [ ]Tmi1 l.................lll = ; vector of measured quantities set.

[ ]Tmi1 s.................sss = ; vector of the signals.

[ ]TT
N

T
H

T
h v  v  vv = ; residual random noise. [ ]Tmmm I- I-  IB = ; Im : m x m unit matrix.

A is a given (m x n) matrix expressing the effect of the parameters X on the observation il ; it is
sometimes called ″ sensitivity matrix″. The expression AX is usually obtained by linearizing an
originally non-linear function of the (n) parameters; it corresponds in our case to all necessary
reductions that need to be applied to the original data in order to eliminate the datum inconsistencies
and other systematic errors in heights data sets. Another function s, the ″signal″, irregularly oscillating



about zero; it is assumed that this quantity has an expected value equal to zero.  Finally, X is a (n x 1)
vector of unknown non-random parameters.

The problem is to determine this curve AX + s by means of discrete observation l, which are
furthermore affected by observational errors v. It clearly appears that the adopted general adjustment
model is analogous to collocation model with parameters; it is a synthesis between adjustment and
prediction.

The solution of the general adjustment model (3) satisfy the minimum condition:

.minvQvvQvvQvsQs N
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      (4)

with 1
sQ−  being an appropriate weight matrix for the unknown correction signals.

One of the main difficulties in this approach is that the mean value { }sEms =  of the stochastic signals
will not necessary be zero, due to the systematic behaviour that is supposed to exist in their values. In
order to avoid such problem, one can initially solve the system (3) using (4) with a unit signal weight
matrix. The initial solution for the signal part (Kotsakis & al., 1999),
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            (5)

Now, we can create the following reduced observations and signals:

sr mll −=          and      sinitr mŝs −=    (6)

It is now clear that the reduced signals rs have zero mean. Furthermore, and in order to compute the

cofactor matrix rsQ and to predict the signal s at points other than the measuring points, it is necessary

to have an analytical covariance function of signals. In this context, the numerical values rs  will be
used for an empirical determination of a covariance function model describing the average spatial
behaviour of the reduced signals rs  and to select consequently the appropriate analytical covariance
model.

In this way, we can repeat the adjustment of the model (3) using a new version for the stochastic model
of the correction signals:

{ } { }
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              (7)

Finally, the solution of the adjustment model (1) by using (7) will be given by the following unbiased
estimators:
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           (8)

We note that the deterministic approach is obtained from the collocation approach by omitting the
presence of the residual correction signals s. In this case, the general adjustment model (3) will be
reduced to the form:

BvAXL +=                                               (9)

The final solution of equation (9) is deducted of the solution given by (8) while putting 
rsQ = 0. This

solution satisfies two different but equivalent minimum conditions, both of which have been given
already by Gauss: least squares and minimum variance. The well known least squares condition for the
adjustment model (9) is:
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             (10)

 3.Correction surface model
In practice, the various wavelength errors in the gravity solution may be approximated by two kinds of
functions in order to fit the quasigeoid to a set of GPS levelling points. The first model is based on a
general 7-parameter similar datum shift transformation with its simplified 4-parameter model for only
the geoid determination purpose. The second is a polynomial regression with its simplified case, a
planar regression.

In this work and in the aim to minimise the long wavelength errors, the systematic datum differences
between the gravimetric geoid and the GPS/levelling data were removed by using the following four-
parameter transformation equation:

 Z )sin(Y )sin().cos(X )cos().cos( xx a iiiii0
T
i ∆ϕ+∆λϕ+∆λϕ+=                  (11)

where 0x  is the shift parameter between the vertical datum implied by the GPS/levelling data and the
gravimetric datum, and X∆ , Y∆ and Z∆ are the three translation parameters in X, Y, Z axes.

Furthermore, and in order to perform the general adjustment model using the collocation approach in
which the signal part is considered as additional stochastic parameters, an analytical expression of the
covariance function of reduced signals is more convenient. For this purpose and in our case, the
Hirvonen model is adopted as optimal analytic covariance function of the reduced signals, which is
given by:
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where      0C :  variance of the reduced signals,
   ζ :  denote the correlation distance.



The use of this model as a local covariance function requires the estimation of two parameters: the
variance of the reduced signals and the correlation distance. These parameters are obtained by fitting
the Hirvonen function to a number of empirical covariance values employing the least squares
adjustment.

The empirical covariance function of the reduced signals was computed with a new program developed
in the framework of this work using the following formula:

∑=ψ jiss s.s
M
1)(C                                              (13)

where M is the number of combinations, ψ is the spherical distance between Qi and Qj and s is the
reduced signal.

The summation was made for all the combinations of the data points Qi and Qj whose distance was
comprised between   ) 2/( ψ∆−ψ and   ) 2/( ψ∆+ψ , and here ψ∆ = 0.5 minutes.  The value of
the sampling interval size ψ∆  represents the minimum distance between the benchmarks stations.

The obtained results of the empirical covariance function are identical to these calculate by the
EMPCOV program of the GRAVSOFT software.

4. Numerical tests

4.1. Description of program
A Fortran program ADJ_GLG has been developed at National Centre of Space Techniques by using
the general adjustment model described above. This program has two main objectives. The first aim is
to adapt the gravimetric quasigeoid to a set of levelled GPS reference points, and the second aim is to
proceed to meticulous and reliable analysis gravimetric geoid accuracy.

The present version will perform three different adjustments by using:

♦  The Deterministic approach,
♦  The collocation approach, and
♦  The Least squares adjustment without information a priori on the accuracy of height data sets.

In the last case, only the 2D spatial field that describes all the datum/systematic distortions between the
available height data sets were estimated.

Special attention has been paid to the organisation of data of gravity geoid grid and the GPS levelling
point to establish the observation equation matrix, and to save memory and to speed up computation.

The input data necessary to perform the ADJ_GLG program were: the grid of the geoid in standard
and binary format, the levelled GPS benchmarks coordinates, and the variances-covariance matrices of
the GPS/levelling and Geoid networks if they are available, otherwise the uniform accuracy of the
ellipsoidal, orthometric and geoid heights will be used.



4.2. Data used

4.2.1. GPS surveys
Many GPS campaigns have been carried out in the past years in Algeria. Furthermore, in the framework
of the TYRGEONET (TYRhenian GEOdetic NETwork) project, two sites located in the North of
Algeria have been determined in the WGS84 system, which have been used later for the densification
and improvement of accuracy of the local geodetic networks. The number of stations GPS used in this
investigation was 41, which 18 are benchmarks of the first order levelling network, and the others
belong to the second levelling network. All of these points are located in the north of Algeria whose
34 points are close to the station of Arzew (see fig. 2). The GPS observations were performed with four
ASHTECH Z-12 dual frequency receivers with baseline length ranging from about 1 to 1000 km, and
the BERNESE software with precise ephemerides was used to process the GPS data. The computed
ellipsoidal heights were referred to WGS84 system and their standard deviations do not exceed 3 cm.
So, in order to make possible the estimation of N (geoid undulation) in these points, all GPS stations
have been connected to the national levelling network, which consists of orthometric heights. The
accuracy of the levelling heights may be estimated to about 6 cm depending on the type of connection
measurements.

Fig 1. Geographical distribution of BGI gravity           Fig 2. Geographical distribution of GPS stations
Measurements.       (∆ : Benchmark,    + : Control point)

4.2.2. Local geoid
In view the use of the GPS for the orthometric height computation, the National Centre of Space
Techniques through the national projects of research, has recently focused a part of the current research
on the precise geoid determination using different methods. In 1999 a new gravimetric geoid published
in the IGes Bulletin, was computed over the whole of Algeria by the present author (Benahmed, 2000).
This solution is based on the validated gravity data supplied by the BGI, topographic information and
the optimal geopotential model OSU91A, which were combined using the remove-restore technique in
connection with the Fast collocation method. The final result is a gravimetric geoid on a 5’ x 5’ grid in
the area with the limits 20° ≤ ϕ ≤ 37° and –7° ≤ λ ≤ 10°. The Fig.3 shows a map of the quasi-geoid
solution in Algeria contoured with 1m interval.



The selected zone to test this program is located in north of Algeria. The choice was emphazised by the
relatively high density of the gravity points, and by the availability of the precise GPS stations covering
the whole of the area (see fig. 1.).

Fig. 3. Quasi-geoid solution in Algeria (m)

4.2.3. Practical results
Before applying the general adjustment model, a first computation by removing the long length effects
using the four parameters transformation permits to confirm the existence of one suspect blunder in the
GPS levelling measurements. The result of the pre-adjustment shows that the combined method is very
effective for detecting the blunder errors in the GPS levelling measurements a condition that the short
wavelength of the geoid are very modelling.

After one rejection, 40 GPS levelling points have been selected but only 18 well distributed GPS
levelling points are used as benchmarks points, and all the other points were excluded from the
combined adjustment in order to estimate the real accuracy given by the comparison between the
adjusted values and the known ones. Moreover, and since the variance-covariance matrix of the GPS
and levelling networks adjustments necessary for this kind of combined adjustment are not available,
we have used the a priori uniform accuracy of the ellipsoidal, orthometric fixed to 3 cm, 6 cm
respectively according to networks accuracy. Also and in absence of the prior geoid error model, we
have used a unit weight matrix and get an estimate for the a posteriori unit geoid variance.

The following tables give the obtained results of the general adjustment model by using the collocation
approach. For the very long-wavelength errors, the four-parameter similitude datum shift
transformation model was determined. The values of parameters are presented in the table 1. The fig. 4
shows the empirical and analytic covariance functions of the reduced signals in benchmarks points. The
bad behaviour of the empirical function is principally due to statistical character of the reduced signals
in benchmarks and to the total number of the GPS stations used in the computation of the empirical
values, which is too small relatively to experimental area size. Furthermore, the most GPS points are
close to Arzew station.
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Fig 4. Covariance functions of reduced signals

The tables 2 and 3 summarise respectively the statistics of the differences between the geoid height
determined by GPS/Levelling and gravimetric quasigeoidal heights after fitting out the systematic
biases using a four-parameter transformation, and the individual components of adjusted GPS, levelling
and geoid residuals. The first statistics show that a good fit between the gravimetric quasigeoid and
GPS/Levelling has been reached, but we do not believe that the rms value is the real accuracy of the
determined geoid, this provided proof that the combined adjustment can optimally fit the gravity geoid
to the GPS levelling point in the least square sense. However, the second statistics prove that the
residuals in benchmarks are due particularly to gravimetric quasigeoid errors.

The standard deviation of the discrepancies between the gravimetric quasi geoid solution and GPS
levelling geoid undulations at control points amounts to ± 5cm after fitting. This fact confirms the good
fit in the test area between the Algerian quasigeoid and GPS/levelling data has been reached.

Finally, we note that the three approaches described above give the similar values of parameters and the
residuals. It is due to the fact that the variance-covariance matrices of different heights data sets used in
this investigation are the diagonal matrices and the estimated signals are the very small quantities.

Parameters Value RMS
X∆ (m) -750.482 14.925
Y∆ (m) -40.376 1.149
Z∆  (m) -497.213 9.155

Scale factor 0.00014090 0.000003

Table 1. Four-parameter transformation model.

Mean Min. Max. RMS
0.000 -0.030 0.055 0.020

Table 2. Residuals after fitting the Gravimetric
geoid to 18 GPS Levelling points (in meters)



Mean Min Max RMS

hv 0.000 -0.001 0.001 0.000
Hv 0.000 -0.003 0.002 0.001
Nv 0.000 -0.051 0.028 0.017

Table 3. Individual components of GPS,
levelling and geoid residuals (in meters).

Mean Min Max RMS

0.017 -0.074 0.104 0.047

Table 4. Statistics of differences between the
gravimetric geoid undulations and GPS
levelling at 22 control points (in meters).

Conclusion
This paper presents the new tool for an adjustment of combined GPS/levelling/geoid networks. The
proposed methodology is interesting specially when we envisage to use the GPS techniques for levelling
purposes with respect to a local vertical datum, and when we want to proceed to a meticulous and
reliable analysis of relative observations to different heights. Two modelling alternatives for the
correction field are programmed namely a pure deterministic parametric model, and a hybrid
deterministic and stochastic model. So, the developed program can be used for testing the reliability of
preliminary geoid error models, which have been derived via internal error propagation from the source
data and their noise used in the gravimetric solution.
However, the difficult step in the application of general adjustment model using the collocation
approach is the estimation of the covariance function of reduced signals and subsequently the selection
of its corresponding analytic representation. In this context, the special attention will be made for the
optimal choice of a local covariance model of the reduced signals capable to describe their spatial
behaviour.
In the field experiment introduced above, the results of the numerical test show that:
♦ The estimated signals don't have any influence on the obtained results since their magnitude varies

between 10-6 and 10-7 meters.
♦ A good fit between the Algerian quasigeoid and GPS/levelling has been reached, it proves clearly that

the combination of GPS/levelling and geoid models is capable to produce orthometric heights with an
accuracy acceptable for the low order levelling network densification

♦ The residuals in benchmarks are due mainly to gravimetric quasigeoid errors in the test area.

Finally, the results obtained were satisfactory, so in the near future the new adjustment will be
performed for a more reliable geoid assessment. This will include an accurate gravimetrically geoid
computed in the whole of Algerian territory by integrating the maximum of new gravimetric,
topographic and geodetic informations and the new data of GPS/levelling. Furthermore, it is necessary
to add in the general adjustment model the variance-covariance matrices of different height data sets in
order to take account of the correlation between data.
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Abstract

Due to the rapid increasing use of GPS heighting, which already gives the same accuracy as
levelling over some 10 to 100 km, there is an urgent need to provide the ″cm quasi-geoid″ to
geodesists and surveyors. In this context, the Geodetic Laboratory of National Centre of Space
Techniques has recently focused a part of the current research on the precise geoid determination
using different methods. In 1997, the first determination of a preliminary geoid in a small zone in
the north of Algeria was calculated by using the least squares collocation and the Gravsoft software.
Nowadays, an improved quasi-geoid has been computed over the whole of Algeria. This solution
was based on the validated gravity data supplied by the Geophysical Exploration Technology Ltd
(GETECH), topographic information and optimal geopotential model, which were combined by
using the remove-restore technique in connection with the Fast Fourier Transformation. The
GLOBE 30″ digital elevation model has provisionally been chosen as the DEM to be used for
computation of the effects of the topography according to the RTM reduction modelling method.
However, the spherical harmonic coefficient set OSU91A, complete to a degree and an order 360,
was adopted as a reference in order to eliminate the long wavelengths of the gravity field. In this
paper, the main features of the Algerian quasi-geoid solution are summarized, and extended tests of
this solution are undertaken using the new GPS and levelling data collected from the TYRGEONET
project and the local GPS/Levelling surveys. The comparisons based on different GPS campaigns
provide, after fitting by using the four-parameter transformation, an RMS differences ± 11cm
especially for the north part of the country over distances of 1 to 1000 km and proves that a good fit
between the new quasi-geoid and GPS/levelling data has been reached.

Key words: Fast collocation method, GPS/levelling, Geopotential model, TYRGEONET project

1. Introduction

Geoid determination is one of the most fundamental problems in geodesy. The precise model of the
geoid not only enable us to transform satellite-derived heights to physically meaningful heights
based on The Earth’s gravity field, but also plays an important role in geophysics and
oceanography. The computation of this surface can be done in a fast and efficient way by means of
FFT techniques or Fast collocation which lead to geoid estimates over large areas, so avoiding sub-
areas computation and patching of sub-solutions.

Furthermore, accurate global geopotential models and, over some regions, detailed DTM allows an
effective reduction of the gravity data, thus implying an optimal application of the “remove-restore”
procedure.

The first determination of a preliminary geoid in a small zone in the north of Algeria was done in
1997 (Benahmed Daho et al., 1998), using the Least Squares Collocation (LSC) method and the
Gravsoft software. In second gravimetric solution over the whole of Algeria territory, the BGI
gravity data and topographic information were included (Benahmed Daho, 2000).



Nowadays, an improved quasi-geoid has been computed over the whole of Algeria between the
limits 16° ≤ ϕ ≤ 40° for latitudes and  -10° ≤ λ ≤ 14° for longitudes, in a grid with mesh of 5’x 5’.
This solution was based on the validated gravity data supplied by the Geophysical Exploration
Technology Ltd (GETECH), topographic information and tailored geopotential model, which were
combined using the remove-restore technique in connection with the Fast Fourier Transformation
(FFT). The computation of the topography effects according to the RTM reduction modelling
method is based on a global topographic model GLOBE of 30″ x 30″. However, the spherical
harmonic coefficient set OSU91A, complete to a degree and an order 360, was adopted as a
reference for to remove and restore the long wavelength components of the gravity and the geoid
respectively.

In order to test the quality and the accuracy of the quasi-geoid calculated, the results of this
computation are compared to GPS/Levelling data collected from the international TYRGEONET
project and the local GPS/Levelling surveys.

2. The available data

In order to fulfil the requests of the FFT-based algorithms used in this paper for geoid height
computation, we did not restrict ourselves to the continental area of Algeria when selecting the data,
but we considered also the surrounding sea region. Therefore, the data selection area is bounded by
limits 16° ≤ ϕ ≤ 40°; and  -10° ≤ λ ≤ 14°. The prediction area is also bounded by same limits, but it
is noted that the results at the borders of the test area are affected by errors, generally due to the lack
of data around the evaluation points.

2.1. Gravity data

For this work, the pre-processed free air anomalies on a 5’ grid in the area bounded by the limits
mentioned above, derived by merging terrestrial gravity data and satellite altimetry data, have been
provided by GETECH through the agreement between the National Centre of Space
Techniques/Geodetic Laboratory and University of Leeds/GETECH without any information on the
accuracy of different values. These data have been acquired in the framework of African Gravity
Project (AGP) from Bureau Gravimétrique International (BGI), Defence Mapping Agency and from
oil companies and many national academic and non-academic organisations in different countries.
All of these gravity measurements are adjusted at GETECH to IGSN71 by using “Latin American
Gravity standardisation Net 1977” and are referred to the Geodetic Reference System 1980.
Figure 1 gives a graphical representation of the gravity data coverage in the computation area. From
the figure it becomes clear that the coverage with gravity observations is not sufficient for some
land areas particularly in the south of the country and new measurements are needed to accomplish
a homogeneous coverage.

Furthermore and since the history of GETECH gravity data processing is not clearly understood, it
is very difficult to estimate the accuracy of the resulted geoid heights. However and considering that
the BGI gravity data on the Algerian territory have been included for the generation of the previous
5’ grid of anomalies, we have proceed to assess the prediction accuracy by comparing the each
validated BGI gravity observation with the a value predicted from the GETECH grid using the
Spline interpolation. Table 1 summarises the statistics of the differences. The analysis of the results
shows the large discrepancies between the original BGI gravity data and predicted ones and proves
that gridded gravity set was not derived for precise geoid determination purpose, but for other
geophysical applications such as regional geological interpretations.



         Anomalies    Mean    Sd     Min.   Max.

         g∆  (Obs)    4.887 26.845  -82.590 136.200

         g∆  (Pred)    4.380 26.184  -89.650 107.825

         Differences    4.657   0.502  -29.923   69.666

Table 1. Statistics of the differences (mGals)

2.2 Geopotential model

The tailored high-degree global geopotential model OSU91A (Rapp & al., 1991), complete to
degree and order 360, was adopted as a reference in order to eliminate the long wavelengths of the
gravity field. Replacing the global model OSU91A by the most recent model EGM96 do not
improve significantly the present solution, because no new gravity data from Algerian territory was
incorporated in EGM96. Gravity anomalies and geoid undulation can be computed in a spherical
approximation from a geopotential coefficient set by:
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where θ λ,   are the geocentric colatitude and longitude of the point where ∆g  and N will be

determined ; C Snm nm,   are the fully normalised spherical geopotential coefficients of the

anomalous potential ; Pnm are the fully normalised associated Legendre functions ; N max  is the
maximum degree of the geopotential model.

Figure 1. Geographical distribution of GETECH gravity measurements.



2.3 Topographic data

The computation of the terrain effects on the quasi-geoid required a detailed DTM model. For this
purpose, The GLOBE 30″ digital terrain model has provisionally been chosen as the DTM to be
used for computation of the effects of the topography according to the RTM reduction modelling
method.

3. Computation procedure

The computations were done using the “GRAVSOFT” package, developed during a number of
years at the National Survey and Cadastre (KMS). For actual solution, the Fast Fourier
Transformation (FFT) and the Remove-Restore procedure were used to compute the quasi-geoid
estimate. In order to smooth the gravity field, the previous gridded gravity data must be corrected
for the effect of the atmospheric and reduced for the effect of the spherical harmonic model and the
topography. The spherical harmonic coefficient set OSU91A has been used to remove the long
wavelength component of gravity data. The computation of the effects of topography according to
the RTM reduction modelling method is based on global topographic model GLOBE of 30″ x 30″
which were used up to a distance of 200 km. The reference surface of 10’ x 10’ needed for the RTM
reduction has been obtained by means of a moving average applied to the detailed one. Table 2
shows the statistics of the reduced gravity data.

         Anomalies    Mean       Sd       Min.       Max.

         Obsg∆    2.43      28.81   - 172.96     218.84

    A91OSUg  g ∆−∆   -2.29      14.94    -122.90     192.28

RTMA91OUSObsr g  g gg ∆−∆−∆=∆   -1.55      14.62    -120.12     823.63

Table 2.   Statistics of reduced gravity data (mGals).

From the results of Table 1, it is obvious that the OSU91A reference field fits well the gravity in the
area under consideration, and the smoothing of the gravity data is considerable after the removal of
the topographic effect if we take into account only the mean and standard deviation values.
However, we will note that all the gravity residuals values are less than to 277.08 mGals excepting
the maximum value which is too large with respect to the statistics of the observed gravity.
Probably, this is due to the errors produced by the FFT technique and the global topographic model
GLOBE used in the computation of the topographic correction at borders of the test area.

The residual quasi-geoid ( rζ ) has been evaluated using FFT technique, implemented in the
GEOFOUR program written by Rene Forsberg. The statistics of residual undulations in a 5’ x 5’
grid (289 x 289 values) are presented in Table 3 while the plot of the values is shown in Figure 2.

   Mean       Sd       Min.       Max.
   0.00      1.42     -7.05        5.69

Table 3.   Statistics of the quasi-geoid residuals rζ (m)



            Figure 2. Residual quasi-geoid (m)                 Figure 3. Quasi-geoid solution in Algeria (m)

The final quasi-geoid was obtained by adding the model and the residual terrain effect on the 5’ x 5’
residual quasi-geoid grid. The values of the geopotential model range from 15.85 m to 56.0 m and
yield the major part of the quasi-geoid. The standard deviation and maximum values of the
contribution from the gravity data are 1.42 m and 5.69 respectively, while the corresponding values
of the RTM effects are 0.07 m and 0.86 m.  Figure 3 shows a map of the quasi-geoid solution in
Algeria. The statistics of the total quasi-geoid values are summarised in Table 4.

   Mean       Sd       Min.        Max.
   35.18      8.83     17.69        60.65

Table 4.   Statistics of the quasi-geoid (m)

4. Comparison with GPS/Levelling data

Many GPS campaigns have been carried out in the past years in Algeria. Furthermore, in the
framework of the TYRGEONET project, two sites located in the North of Algeria have been
determined in the WGS84 system, which have been used later for the ALGEONET (ALGerian
GEOdynamical NETwork) project and for densification and improvement of accuracy of the local
geodetic networks. The number of stations GPS used in this investigation was 258, which 16 are
benchmarks of the first order levelling network, and the others belong to the second levelling
network. All of these points are located in the north of Algeria and distributed as in Figure 5 whose
the most are close to the station of Arzew.  So, in order to make possible the estimation of N (geoid
undulation) in these points, all these GPS stations are connected to the national height system
through spirit levelling. The GPS observations were performed with four ASHTECH Z-12 dual
frequency receivers with baseline length ranging from about 1 to 1000 km, and the BERNESE
software with precise ephemerides was used to process the GPS data.

Among 258 GPS levelling points only 16 well distributed GPS levelling points are used as
benchmarks points, and the others were excluded in order to estimate the real accuracy given by the
comparison between the adjusted values and the known ones. These values have been compared also
to the BGI solution which is based on a set of 12183 validated point free air gravity anomalies
supplied by the BGI, two elevation grids; 1 km x 1 km digital terrain model for the north of Algeria
and the ETOPO5 for the rest of the area, and the OSU91A geopotential model, which were



combined using the remove-restore technique in connection with the Fast collocation. The final
result was a gravimetric geoid on a 5’ x 5’ grid in the area bounded by limits 20° ≤ ϕ ≤ 37° and
–7° ≤ λ ≤ 10° (Benahmed Daho, 2000). These two computations show differences even up to 4 m
and the standard deviation value is about 1.35 m. The high discrepancies are attributed principally to
the two difference computation methodologies relative to the technique used for the geoid heights
estimation and to the DTM employed for the topographic correction computation.

The statistics of the differences for both solutions before and after fitting out the systematic biases
and tilts between the gravimetric geoid and the GPS/levelling data by using the appropriate four-
parameter transformation are summarised in table 5 and show that no significant improvements
have been reached in the GETECH solution comparative to the BGI solution. Probably, it is due to
the fact that the data provided by BGI are included in the GETECH database which have been used
to generate of previous free air anomalies grid.

Furthermore, and in order to estimate the real accuracy, the GPS/Levelling undulations at 242
control points are compared at adjusted ones. The figure 4 shows the histogram of these differences.
We can see that the combination the gravimetric BGI_solution with GPS/levelling gives the best
results. Unfortunately, and considering the number of GPS/Levelling stations used in this
investigation and their distribution, the obtained accuracy can not be generalised for the all north
part of the country.

   Geoid models Mean Min. Max. Stand. dev.

BGI Solution -1.431 -1.732 0.306 0.617
Before Fitting

GETECH Solution 0.608 0.455 1.531 0.321

BGI Solution 0.000 -0.034 0.048 0.020
After Fitting

GETECH Solution 0.000 -0.194 0.135 0.104

Table 5. Comparison of GPS/Levelling undulations to gravimetric quasi-geoidal heights (m)

Figure 4. Histogram of the differences with GPS/Levelling geoid undulations at control points (m)
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Figure 5. Geographical distribution of GPS stations
                (+: Control point,   ∆: Benchmark point)

Conclusion

The new Algerian quasi-geoid was computed via Fast Fourier Transformation using the Remove-
Restore procedure by integrating the new gravity data supplied by GETECH through the agreement
between the National Centre of Space Techniques/Geodetic Laboratory and University of
Leeds/GETECH. The comparisons of the new quasi-geoid with GPS/Levelling data provide, after
fitting, an RMS differences about ± 11 cm for the north part of Algeria over distances of 1 to
1000 km and prove that good fit in the test area between the new quasi-geoid and GPS/levelling
data has been reached. Unfortunately, the non-availability of GPS levelling data on the set of the
country with a homogeneous distribution and sufficient density didn’t allow to make a more reliable
assessment on the quality of the computed geoid.

Finally, the results obtained were satisfactory, so in the near future, the new solutions will be
proposed and the additional comparisons should be made for a complete error assessment of the
new Algerian quasi-geoid. These will include new gravity data, topographic informations, and the
new data of GPS/levelling in order to reach an acceptable accuracy on all the country.
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Abstract. The space-wise approach to GOCE data 
reduction exploits the spatial correlation of the 
observations by “projecting” them on a spherical 
grid at mean satellite altitude; to this aim a local 
collocation prediction based on a global covariance 
function of the potential T can be used. Since the 
implicit hypothesis of rotational invariance is not 
fulfilled by the gravitational potential, the global 
covariance function cannot describe the local 
characteristics of the field in the different 
interpolation areas. As a consequence the estimation 
error of the gridded values is not homogeneously 
distributed all over the reference sphere, but it is 
much higher over the Himalaya, the Alps, the 
Andes, etc., i.e. over areas where the random field 
presents an “unexpectedly” high variability. These 
errors may degrade the performance of the 
subsequent spherical harmonic analysis for the 
recovery of the potential coefficients, especially at 
very high degrees. 

In the light of this reasoning, the whole 
procedure of the space-wise approach is expected to 
benefit by a priori making the analysed random 
field smoother and thereby more homogeneous. 
This can be done by first determining a global 
model which describes the main features of the 
potential distribution on the spherical grid and then 
by subtracting it from the observed data once and 
for all. The signal covariance function has to be 
corrected accordingly. In principle, the resulting 
field is more “stationary”, also when it is regarded 
as a time-wise process. 

This procedure has been applied on simulated 
GOCE data, showing that the errors of the estimated 
spherical    harmonic    coefficients    slightly    but 

systematically decrease. Moreover the improvement 
is much more significant in critical areas. 
 
Keywords. GOCE mission, space-wise approach, 
gravity field regularization 

 
 
1  An introduction to the problem 
 
The paper deals with an attempt at assessing the 
effects of inhomogeneities of the gravity field on the 
space-wise approach as applied to the GOCE 
mission (ESA, 1999), as well as, to some extent, at 
repairing the subsequent drawbacks. 

As it is known the same data set can be reduced 
following different approaches, like the direct 
method (Bruinsma et al., 2004; Ditmar et al., 2003) 
or the time-wise method (Pail and Plank, 2002; 
Schuh, 2000), which however are not in the focus of 
the present paper.  

The space-wise approach (see Figure 1), as 
understood today, comprises three main steps, i.e. 
• a time-wise Wiener filtering (Papoulis, 1984) of 

data along the satellite orbit; 
• a local prediction of grids of suitable functionals 

of the anomalous potential (e.g. T, Trr, TNN – TEE, 
where TNN, TEE are second derivatives in the 
northern and eastern directions); 

• a harmonic analysis to estimate spherical 
harmonic coefficients by numerical integration 
(Migliaccio and Sansò, 1989) or by fast spherical 
collocation (Sansò and Tscherning, 2003). 

The procedure has to be iterated both because when 
Wiener filtering is applied to raw data, information 
is  lost  in  the  low  frequency  band  (where  noise  is 



 
 
Fig. 1 Scheme of the space-wise approach to GOCE data analysis 

prevailing), and in order to correct directional 
derivatives, due to the instrumental frame 
wandering; iterations provide the lost information. 
The procedure is known to be convergent,  
by numerical tests (Migliaccio et al., 2004a; 
Migliaccio et al., 2004b). 

However, in a first phase of the mission study, 
when the rotations of the gradiometer were 
considered as controlled to the level of some  
arc-minutes, the grid of estimation errors after the 
first iteration was fairly homogeneous, showing at 
most some trackiness related to the strong 
correlation of the noise (see Figure 2). 

On the contrary, when a stronger attitude 
dynamics has to be accepted in the GOCE design, 
the same procedure yields grids where a clear 
signature of geophysical features (e.g. the Andes, 
the Himalaya, etc.) was visible and persistent 
through the iterations (see Figure 3 and Figure 4). 

 
Fig. 2 Estimation error after the first iteration working with 
second radial derivatives Trr  

 

Legend 
 
SST = Satellite to 
Satellite Tracking 
 

SGG = Satellite 
Gravity-Gradiometry 
 

FFT = Fast Fourier 
Transform 
 

LORF = Local Orbital 
Reference Frame 
 

GRF = Gradiometer 
Reference Frame 

Fig. 3 Estimation error after the first iteration working with 
second derivatives Tzz along the instrumental z-axis. The 
critical areas are encircled  
 
 

 
Fig. 4 Estimation error after the last iteration working with 
second derivatives Tzz along the instrumental z-axis 



 
This of course would call for a regional gridding 

procedure using regionally adapted covariance 
functions (Arabelos and Tscherning, 2003) or for a 
multiscale spherical analysis (Freeden, 1999) which 
still remains an interesting alternative for the future; 
however dealing with present choices, it seemed to 
the authors that a kind of “homemade” multiscale 
analysis could be performed by: 
• cutting the highest signal values (e.g. above the 

2σ level, with σ computed on all the data); 
• making a specific spherical harmonic expansion 

of a smoothed version of the “peak only” grid; 
• recomputing a new data set where the effect of 

the peaks are removed; 
• applying the space-wise approach to the 

regularized data set; 
• adding back to the estimated spherical harmonic 

coefficients, those used to eliminate the peaks. 
We hoped that such a remove-restore procedure, by 
providing a more homogeneous and smooth data set 
to the system, would in the end produce a more 
accurate estimate of T. 
 
2  The experiment and its results 
 
In order to test the performance of the iterative 
space-wise approach when the previously described 
regularization procedure is applied, a simulation has 
been performed in a typical GOCE framework. 

The EGM96 model {Tnm}, from degree 25 to 
300, is used to simulate the potential values T and 
the second derivatives Tzz, along the instrumental 
 z-axis oscillating according to the following  
long-period sinusoidal laws: 
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where θ y is the rotation around the y-axis (pitch) 
and θ r around the radial direction (roll). 

The observations are simulated every second 
along a circular orbit, at an altitude of 250 km and 
with an inclination of 96.5°, for a total number of 
data N = 223 ≅ 8⋅106, corresponding to a mission 
length of about 100 days. 

A coloured noise, specified by the spectrum in 
Figure 5, is added to the Tzz observations, while a 
white noise with a standard deviation of 0.3m2/s2, 
corresponding to an orbital error of about 3 cm, is 
added to the potential T values (see Figure 6). 

 
 

Fig. 5 Signal (in grey) and noise (in black) power spectral 
density of the second derivatives Tzz   
 

 
 

Fig. 6 Signal (in grey) and noise (in black) power spectral 
density of the potential T 

 
A multiple-input multiple-output (MIMO) Wiener 

filter is designed by using the empirical spectra of 
Trr and T as well as the empirical cross-spectrum 
between Trr and T, all computed from the EGM96 
model. 

After filtering, the data are locally interpolated on 
a spherical grid at satellite altitude, with a cell size 
of 0.72°×0.72°; in fact this allows for an almost 
exact integer partitioning of the latitude interval 
covered by the observations, excluding the polar 
gaps. The local gridding is implemented by 
collocation, cell by cell, on a moving window of 
double size with respect to the grid cell. 

At this point, we set up the homogenization 
procedure, selecting the Trr gridded data which are 
outside the global 2σ value (in our simulation σ is 
equal to 143.7 mE). Note that the thresholding is  
only based on the Trr values and not on the potential 
T, which is much smoother and thus more 
homogeneous. 

 



 
Figure 7 shows the Trr grid as obtained by the 

local gridding procedure, while Figure 8 represents 
the “peak only” grid, referred back to the zero level; 
in other words, we have considered a field only in 
the peak areas, with values (Trr – 2σ) where Trr > 2σ 
and (Trr + 2σ) where Trr <  –2σ. 

After a moving-average smoothing to avoid 
Gibbs effects, we get a spherical harmonic global 
model {δTnm} (by numerical integration), which 
reasonably describes the “peak only” grid. 

This model has to be subtracted from the original 
one, in order to obtain a more homogeneous  
data set, i.e. 
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Fig. 7 Trr estimated grid after the first step of the iterative 
space-wise approach 
 

 
Fig. 8 Grid of the highest Trr values, above the 2σ threshold; 
the values are referred back to the zero level  
 
 

Note that the signal degree variances of the  
new model, and hence the corresponding global 
covariance functions, remain practically the same, 
as shown in Figure 9. 

Starting from the new regularized data, we first 
apply the space-wise approach and then, at the end 
of the iterative procedure, add back the “peak only” 
model. 

 
Fig. 9 Degree variances of the EGM96 model (in grey) and of 
the new one (in black) after regularization 
 

Let us come to the results of this technique, 
comparing the cases with and without statistical 
homogenization. 

The error degree variances of the new solution, 
shown in Figure 10, are globally systematically 
better. The GOCE requirement of solving the 
gravity field up to degree 200 can be safely reached. 

The amount of the improvement in the harmonic 
coefficients estimation can be evaluated by the 
following relative differences 
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where nδσ ,  are the error degree standard 
deviations after the last step of the space-wise 
iterative procedure, without and with regularization 
respectively. This index is displayed in Figure 11, 
degree by degree, clearly showing a systematic 
improvement of the order of about 5%. Let us also 
note that, apart from one value, 

new
nδσ

nδσ > . new
nδσ

Nevertheless the real advantage of this technique 
can be better perceived locally. To this aim we 
concentrate on a critical area, e.g. in the Himalaya 
(78°<λ<92°, 60°<θ<68°), where the grid estimation 
errors are very high. 

 



 

 
Fig. 10 Error degree variances of the estimated model with 
regularization, after the first (in grey) and last (in black) 
iteration. The reference model is EGM96 
 

 
Fig. 11 Relative differences of the error degree standard 
deviations without and with regularization, after the last step 
of the iterative procedure 
 

The final errors, in terms of geoid undulation N, 
are shown in Figure 12 and Figure 13, without and 
with the statistical regularization, respectively. The 
same errors for the gravity anomalies ∆g are 
displayed in Figure 14 and Figure 15. These errors 
have been computed as differences with respect to 
the “true” EGM96 model, up to degree 200. It is 
clear that the new estimated model produces a 
much more homogeneous error distribution, 
reducing the “local peak” down to 30%. Some 
statistical indicators are reported in Table 1 and 
Table 2. The values are rather large considering the 
global goal of the GOCE mission of 1 cm in the 
geoid and 1-2 mgal in the gravity anomalies at 
about 1 degree wavelengths. However, note that we 
have simulated only 3 months of data and we have 
not used all the components provided by the GOCE 
gradiometer. Their additional use may improve the 
solution considerably (Tscherning, 2003). 

 
Table 1. Maximum and r.m.s. error of the geoid undulation, 
in the Himalaya region, without and with the regularization 
 

max error of N r.m.s. error of N 
without reg. with reg. without reg. with reg. 

1.071 m 0.722 m 0.336 m 0.229 m 
relative difference relative difference 

32.57% 31.80% 

 
 
Table 2. Maximum and r.m.s. error of the gravity anomalies, 
in the Himalaya region, without and with the regularization 
 

max error of ∆g r.m.s. error of ∆g 
without reg. with reg. without reg. with reg. 
23.28 mgal 16.53 mgal 7.74 mgal 5.52 mgal 

relative difference relative difference 
29.01% 28.75% 

 
 

 
Fig. 12 Estimation errors of the geoid undulation N in the 
Himalaya region without applying the regularization 
 

 
Fig. 13 Estimation errors of the geoid undulation N in the 
Himalaya region after applying the regularization  

 



 

 
Fig. 14 Estimation errors of the gravity anomalies ∆g in the 
Himalaya region without applying the regularization 
 

 
Fig. 15 Estimation errors of the gravity anomalies ∆g in the 
Himalaya region after applying the regularization 

 
3  Conclusions 
 
Although the use of this remove-restore approach to 
smooth the high level inhomogeneities before 
applying collocation has not a very large impact on 
the accuracy of harmonic coefficients estimation, 
we think that: 
• the improvement is systematic and therefore 

worthwhile; 
• the local effect of this correction in critical areas 

is very significant, thus justifying the effort of 
its implementation. 

The reason why such a strong signature of the 
errors was not visible in previous simulations of the 
space-wise approach, stems in our opinion from  
the fact that, by introducing strong rotational 
dynamics of the satellite, we make the hypothesis 
of stationarity, on which the Wiener filtering is 
based, much less realistic (Albertella et al., 2004).  

As a result the areas of strongest signal introduce an 
error with a signature directly proportional to the 
signal strength. Would this hypothesis be confirmed, 
one should also think of applying a similar 
procedure to the time-wise approach. 
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Abstract  
 
Least-squares (LS) estimation is a standard tool for the optimal processing of geodetic data. In the framework 
of global gravity field modelling, for example, such methods are extensively applied for the determination of 
geoid solutions from CHAMP and GRACE data via the estimation of a large set of spherical harmonic 
coefficients. Frequently, in geodetic applications additional nuisance parameters need to be included in the 
least-squares adjustment procedure to account for external biases and disturbances that have affected the 
available measurements. The objective of this paper is to expose a trade-off which exists in the LS inversion 
of linear models that are augmented by additional parameters in the presence of unknown systematic errors in 
the input data. Specifically, it is shown that if a linear model of full rank is extended by a scalar parameter to 
account for a common bias in the data, the LS estimation accuracy of all the other model parameters 
automatically worsens. Some simple numerical examples are also given to demonstrate the significance of this 
accuracy degradation in the geodetic practice. 
 
 
 
 
 

 
 
 
1.  Introduction 
 
Least-squares (LS) estimation is a standard tool for the optimal processing of geodetic data. Its use 
is commonly associated with a linear(-ized) model of observation equations 
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where y is a vector of observations, v is a vector of zero-mean random errors with a covariance 
(CV) matrix C, A is a matrix of known coefficients, and x is a parameter vector that needs to be 
estimated from the given data. Despite its simplistic linear character and its inherent restriction for 
additive noise, the above model is frequently employed in every field of geodetic research (e.g., 
Dermanis and Rummel 2000). 
 
A problem that is often encountered in geodetic data analysis with the aforementioned general 
model is the presence of external disturbances (biases) in the available measurements. In cases 
where the effect of such disturbances can be determined a-priori with sufficiently high accuracy 
(i.e. with an uncertainty that is significantly lower than the data noise level), the original 
measurements y should be replaced with a ‘corrected’ set that is compatible with the theoretical 

 
 



 
 
 
 

model of Eqs. (1) and (2). If, on the other hand, the magnitude of the external biases is completely 
unknown (or, at least, poorly known), then the model of Eq. (1) should be augmented by additional 
parametric terms that describe the systematic effects in the input data. An integrated LS estimation 
procedure can then lead to optimal estimates for the original model parameters x and the additional 
bias-related parameters that will be included in the data adjustment process. 
 
Bias modeling and elimination has been a topic of continuous research interest in geodesy, by both 
theoreticians and practitioners. An extensive discussion, related mostly to the mathematical details 
of bias treatment in geodetic data analysis is given in Kukuča (1987). Some interesting aspects from 
the theory of nuisance parameter elimination in LS adjustment models can be found in Schaffrin 
and Grafarend (1986). A comparison of different approaches for dealing with systematic effects 
that arise from the integration of heterogeneous geodetic data sets is given in Schaffrin and Baki-Iz 
(2001). The problem of bias modeling and elimination has also been treated in the framework of 
various particular fields of geodetic research, including gravimetric data processing (e.g. Kubáčková 
and Kubáček 1993, Harnisch 1993), altimetric data processing (e.g. Tscherning and Knudsen 1986, 
Gaspar et al. 1994), GPS data processing (e.g. Satirapod et al. 2003, Jia et al. 2000) and global 
gravity field modelling (e.g. Lerch 1991). 
 
Motivated by the fact that most geodetic observations are carried under complex physical conditions 
which do not correspond exactly to the standard mathematical models that we often employ for their 
analysis, the purpose of this paper is to expose an important trade-off which exists in the LS 
inversion of linear models that are augmented by additional (nuisance) parameters in the presence of 
unknown systematic errors in the input data. In particular, it is shown that if a linear model of full 
rank is extended by a single scalar parameter to account for a common bias in the data, then the LS 
estimation accuracy of all the other model parameters automatically worsens. Two different cases 
are considered in this study, depending whether some or all of the observations are affected by a 
common unknown bias. Some numerical examples are also given to demonstrate the significance of 
this accuracy degradation in the geodetic practice. 
 
 
 
 
 
2.  LS parameter estimation with different types of models 
 
In this section, we examine the results obtained from the LS inversion of three different models for 
the linear(-ized) system of observation equations. Specifically, we study the cases where none, all, 
or some of the input measurements are affected by a common unknown bias. 
 
 
 
 
2.1 Linear model with non-biased data 
 
This is the archetypical case whose formulation and description have already been given in the 
previous section; see Eqs. (1) and (2). For the sake of economy in our discussion, we shall assume 
that the design matrix A has full column rank and that the CV matrix C is fully known. In such a 
case, the LS inversion of the system of observation equations in Eq. (1) leads to the well-known 
optimal solution 
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The quality of the above unbiased estimate is generally described by its associated CV matrix 
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whose diagonal elements give a measure of the statistical accuracy for the estimated model 
parameters . x̂
 
 
 
 
2.2 Linear model with uniformly biased data – Case I 
 
In the presence of a common unknown bias in the measurements y, the functional model of Eq. (1) 
should be modified as follows 
 

vsxAy               +β+=                            (5) 
 
where  is a scalar parameter that describes the systematic offset in the input data, and s 

corresponds to a vector with all its values equal to one, 

β

[ ]T 11     K=s . The data noise v follows 
the same stochastic behaviour as in the case of the simple model with non-biased data. 
 
Assuming that the partitioned matrix [  has full column rank, the LS inversion of the 
augmented system in Eq. (5) leads to the following optimal estimates for the original model 
parameters x and the bias parameter 
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qxx  ˆ        ˆ β−= b                                                                          (7) 

 
where the auxiliary quantities ,  and  are defined by the expressions bx q k
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Note that the term  corresponds to the LS estimate that we would obtain if we ignored the bias 
presence in the input data. Applying the (co-)variance propagation law to the unbiased estimators of 
Eqs. (6) and (7), we obtain the CV matrix of the estimated parameter vector  

bx

x̂
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and also the variance of the estimated bias parameter β  ˆ
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The last two formulae can easily be derived by using standard rules of matrix calculus. 
 
 
 
 
2.3 Linear model with uniformly biased data – Case II 
 
A useful generalization of the results given in the previous section is obtained if we assume that 
only a part of the data is affected by a common unknown bias. In this case, the standard model of 
Eq. (1) should be modified in the following way 
 

{ {
vA

v
v

0
s

x
A
A

y
y

y









+








β+








=









2

1

2

1

2

1                

321

                                    (13) 

 
The total data vector y is now partitioned into two subsets,  and , whereas the submatrices  
and  provide the corresponding partition for the design matrix A of the initial model in Eq. (1). 
Only the first group of measurements is affected by a common unknown bias, which is denoted 
again by the scalar parameter . The symbol s denotes a vector of ones, whereas 0 is the zero 
vector. Finally, the subvectors  and  contain the random errors of the two corresponding data 
subsets, with the following stochastic characteristics 
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For simplicity, we assume zero cross-correlation in the data noise between the two groups of 
measurements. Assuming also that the augmented model of Eq. (13) has full rank, its LS inversion 
yields the following optimal solution 
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where the auxiliary quantities  and p λ  are defined by the equations 
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The auxiliary term  has already been defined in Eq. (8). Applying the (co-)variance propagation 
law to the unbiased estimators of Eqs. (16) and (17), we get the CV matrix for the estimated 
parameter vector  
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and also the variance of the estimated bias parameter β  ˆ
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All the previous formulae can easily be verified by using standard rules of matrix calculus. A brief 
discussion on the estimation performance that is achieved by employing each of the three previous 
models follows in the next section. 
 
 
 
 
 
3.  Remarks 
 
By comparing the results from Eqs. (4), (11) and (20), it is seen that the accuracy of the estimated 
parameters  becomes worse when an overparameterized model is used for the LS adjustment of 
the input data. Indeed, in the cases where biased measurements are processed with an augmented 
linear model, the CV matrix of  “increases” by the amount  (or ), with respect to the 
result obtained from the LS adjustment with non-biased data. Since the scalar quantities  and 

x̂

x̂ T
 qqk T

 ppλ
k λ  

are positive, the diagonal elements of  in Eqs. (11) and (20) will always be larger than the 
corresponding elements of C  in Eq. (4).  

xC ˆ

x̂
 
It can thus be concluded that the presence of an additional bias parameter in a linear model causes 
an overall degradation in the LS estimation accuracy for the rest of the model parameters. Note that 
the noise level is assumed to be the same in the cases of non-biased and biased data. 
 
Furthermore, it is interesting to point out that the extent of the accuracy reduction is completely 
independent of the magnitude of the bias that has affected the input data. That is evident from the 
fact that the terms k  and  do not depend on T

 qq T
 ppλ β . Hence, any constant data bias (regardless 

of how small or large its true value really is) that is taken into account by adding an extra parameter 
within the LS adjustment framework, will cause the same degradation on the estimation accuracy 
for the rest of the model parameters. 
 
 
 
 
 
 

 
 



 
 
 
 

4.  Numerical examples 
 
Two simple examples are given in this section to demonstrate the practical significance of the 
theoretical results that were previously discussed. 
 
 
 
 
4.1 Gravity network adjustment 
 
The first example refers to the LS adjustment of a simulated gravity network, as shown in Figure 1. 
The observables consist of eight gravity differences that are specified explicitly in Table 1, along 
with their corresponding accuracy. Note that all observations are considered uncorrelated in this 
example. 
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Figure 1.  A simulated gravity network. 

 
 
 
Table 1. The simulated observables, along with their corresponding accuracy, for the gravity 
network of  Figure 1.  
 

i Observables Measurement accuracy 
σi (in µgal) 

1 ∆g12 = g2 – g1 11 
2 ∆g23 = g3 – g2 10 
3 ∆g34 = g4 – g3 15 
4 ∆g14 = g4 – g1 16 
5 ∆g51 = g1 – g5 17 
6 ∆g52 = g2 – g5 16 
7 ∆g53 = g3 – g5 15 
8 ∆g24 = g4 – g2 10 

 
 



 
 
 
 

Assuming a known gravity value for point 1, which is held fixed for the purpose of datum 
definition, the unknown parameter vector x in the network adjustment includes the absolute gravity 
values  for the four other network points. Using the information provided in Table 1, the CV 
matrix  of the estimated parameters, for the case of non-biased data, can be computed from Eq. 
(4). The result is 
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If a common unknown bias is assumed to exist in all observations, then the extended model of Eq. 
(5) must be used for the LS network adjustment. In this case, the CV matrix  for the estimated 
gravity values is obtained from Eq. (11), which yields the result 
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whereas the standard deviation of the estimated bias parameter  according to Eq. (12) is β̂
 

galµσ   10.81    ˆ =β                                                       (24) 

 
 
Table 2. Standard deviation for the estimated gravity values in the network of Figure 1. 
 

 
Model 

parameters 
(x) 

 

 
Estimation accuracy 

obtained from the simple 
LS adjustment model 

 
Estimation accuracy 

obtained from the extended 
LS adjustment model 

g2 8.62 µgal 10.23 µgal 
g3 10.81 µgal 15.74 µgal 
g4 10.01 µgal 19.37 µgal 
g5 11.19 µgal 12.13 µgal 

 
 
By comparing the diagonal elements from the CV matrices in Eqs. (22) and (23), it can be deduced 
that an average degradation of about 4.2 µgal in the accuracy of the estimated gravity values occurs, 
when the augmented model is used. The actual decrease in the estimation accuracy for each 
individual gravity value is analytically shown in Table 2. 
 
 
 
 

 
 



 
 
 
 

4.2 Gravity determination from repeated free-fall experiments 
 
For our second example, we consider the determination of absolute gravity through repeated 
observations of a free-falling mass m at a certain point P (see Figure 2). 
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Figure 2.  Free-fall experiment for absolute gravity determination. 
 
 
Assuming a homogeneous gravity field within the region of the experiment, we have the following 
well-known equation 
 

2
  

2
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        iiooi tgtuxx ++=                                                         (25) 

 
which describes the Newtonian motion of the test mass. The quantities  and u  denote the known 
initial position and velocity,  is the observed vertical position of the test mass at the time instant 

, and 

ox o

ix

it g  corresponds to the gravity acceleration at the observation point. 
 
The model of Eq. (25) provides the basic observation equation that we can use to determine the 
gravity value g  via the LS adjustment of multiple repeated measurements { } of the vertical 
position of the test mass. For simplicity, we assume that (i) the time values t  are known without 
any error, and (ii) the initial conditions are such that 

ix

i
0=ox  and 0=ou . 

 
Our simulated experiment consists of twenty-five different drops of the test mass. The recorded 
times  are shown in Table 3, along with the corresponding accuracy for each of the observed 
positions . Using the information from Table 3, we can easily construct the design matrix A and 
the data noise CV matrix C for the underlying adjustment problem. The standard deviation of the 
estimated gravity value is then computed by the general formula of Eq. (4), which yields the result  

it

ix

 
mgalg  0.281    ˆ =σ                                                       (26) 

 
 
 

 
 



 
 
 
 

Table 3. Accuracy of the simulated observables  and the corresponding time intervals  for the 
free-falling mass experiment.  

ix it

 

i ti (in sec) 
ixσ  (in mm) 

1 0.516 0.001 
2 0.474 0.002 
3 0.487 0.002 
4 0.502 0.002 
5 0.467 0.002 
6 0.491 0.002 
7 0.487 0.001 
8 0.501 0.001 
9 0.512 0.001 

10 0.493 0.003 
11 0.479 0.003 
12 0.492 0.003 
13 0.514 0.002 
14 0.505 0.002 
15 0.496 0.002 
16 0.493 0.003 
17 0.495 0.003 
18 0.510 0.003 
19 0.501 0.002 
20 0.486 0.002 
21 0.483 0.003 
22 0.495 0.003 
23 0.510 0.002 
24 0.511 0.002 
25 0.495 0.002 

 
 
In the case where a common unknown bias exists in all available observations , the following 
extended model must be employed for the optimal determination of the gravity acceleration 

ix
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where  corresponds to the common bias in the measurements. The standard deviation of the LS 
estimated gravity acceleration is now computed from the general formula of Eq. (11), which gives 
the result 

β

 
mgalg  5.473    ˆ =σ                                                       (28) 

 
whereas the standard deviation of the bias estimate, according to Eq. (12), is 
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From the numerical results given in Eqs. (26) and (28), it is evident that the standard deviation of 
the estimated gravity acceleration  increases by almost a factor of 20, when a single bias 
parameter is included in the LS adjustment model for the repeated observations { }! 

ĝ

ix
 
 
 
 
 
5.  Conclusions 
 
The elimination of a common unknown bias from a set of geodetic measurements can be achieved 
by extending the classic linear(-ized) model vxAy      +=  with an additional scalar parameter that 
describes the systematic offset in the data values. In this way, optimal unbiased estimates for the 
model parameters x can be obtained when employing the standard LS estimation criterion with a 
biased data set. 
 
Nevertheless, as it was explained in this paper, the statistical accuracy of the estimated model 
parameters  will always be worse when an additional bias parameter is included in the LS 
adjustment process. Geodesists should be aware of this important trade-off, since in many 
applications the theoretical models often need to be augmented with additional nuisance parameters 
in order to account for external disturbances in the observations. 

x̂
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Abstract

GOCE will be the first satellite ever to measure the second order derivatives of the Earth’s
gravitational potential in space. With these measurements it is possible to derive a high accu-
racy and resolution gravitational field if systematic errors and/or outliers have been removed
to the extent possible from the data. It is necessary to detect as many outliers as possible in
the data pre-processing because undetected outliers may lead to erroneous results when the
data are further processed, for example in the recovery of a gravity field model. Outliers in the
GOCE gravity gradients, as they are likely to occur in the real observations, will be searched
for and detected in the processing step preceding gravity field analysis.

As the diagonal gravity gradients are the main gradient observables for GOCE, three meth-
ods are discussed to detect outliers in these gradients. The first is the tracelessness condition,
that is, the sum of the diagonal gradients has to be zero. The second method compares GOCE
gravity gradients with model or filtered gradients. Finally, along track interpolation of grav-
ity gradient anomalies is discussed. Since the difference between an interpolated value and
a measured value is large when outliers are present, along track interpolation is known to be
suitable for outlier detection. The advantages and disadvantages of each method are discussed
and it is shown that the final outlier detection algorithm, which is a combination of the three
methods, is able to detect almost all outliers while the number of falsly detected outliers re-
mains small.

Key words. Outliers � GOCE mission � Gradiometry � Statistical tests

1 Introduction

Outlier detection is one of the important tasks in the GOCE data pre-processing. In this paper,
the focus will be on the gravity gradients (GG). The outliers themselves may point to possible
instrument problems, while undetected outliers may lead to erroneous results when the data are
further processed, for example in the external calibration of the gravity gradients, in the gravity
field analysis or in the error assessment. It is therefore important to detect as many outliers as
possible in the data pre-processing. A restriction in the context of quick-look data processing is
the time required to detect outliers. The outlier detection algorithm that is implemented should
have a short run-time, while the intervention by an operator should be minimal, that is, the s/w has
to be fully automated.

First, the outlier detection is described in the pre-processing context. Second, several outlier
detection methods are discussed and compared. Finally, the outlier detection methods are tested
in a simulation study and the overall algorithm is discussed. Alternatives are discussed in, for
example (Albertella et al. 2000; Bouman et al. 2004a; Kern et al. 2004; Tscherning 1991).



2 Pre-processing

Since the main goal of the GOCE mission (expected launch in August 2006) is to provide unique
models of the Earth’s static gravity field (ESA 1999), the GOCE gravity gradients need to be
corrected for temporal gravity field variations such as tides. Furthermore, even after in-flight
calibration the observations will be contaminated with stochastic and systematic errors. Systematic
errors include GG scale factor errors and biases (Cesare 2002) which one tries to correct for in
the external calibration step (see e.g. Bouman et al. 2004b). Also outliers in the GOCE gravity
gradients need to be searched for and detected in the Level 2 pre-processing step. The steps for
quick-look pre-processing are:

1. corrections for temporal gravity field variations;

2. outlier detection and correction;

3. external calibration and error assessment;

4. iteration of steps 2 and 3.

3 Outlier detection

We will consider time series of gravity gradients���������
	���
����������
(1)

with
� 	�� � 	���� ���

s, � � �"!#!$
�%&%
or '�' and

�
the number of observations.

First, data snooping is discussed when a model of condition equations is used, which will
be the starting point for our outlier detection. Then we will discuss the tracelessness condition
which will be the baseline method for outlier detection. The comparison of measured gradient
with model gradients (gradient anomalies) and the interpolation of the gradient anomalies are
discussed as well.

3.1 Data snooping

Let’s assume that the
�)(*�

vector
%

contains the diagonal gravity gradients which errors are
normally distributed with known error variance matrix +-, :% ."/0��1324% 5�
 + , � (2)

with
1

the expectation operator. All single observations will be tested for outliers. The hypothesis6879�;:=<>1324% 5?�"@
(3)

will be tested against 68AB�;: < 1324% 59�*CED�FG
HFJI�"@
(4)

where
: <

is the condition equation matrix,
CKD��": < C , and

C , is a unit vector with 1 at row
�

if the
i-th observations is to be tested, and

F
is an outlier with unknown size. In the condition equation

(3), the matrix
: <

has L rows, the number of conditions, and it has
�

columns, the number of
observations. It can be shown that

6 7
will be rejected if, see (Teunissen 2000):MON �QPSR

or MUT PVR
(5)



with M � C < D + ���D"WX C < D + ���D CED (6)

where W �Y: < %
is the vector of misclosures, + D �Z: < +�, : , and

P R
is the critical value which

depends on the significance level [ . The random variable M is the w-teststatistic and has a standard
normal distribution under

6\7
. A disadvantage of data snooping may be that it is computationally

intensive. In general + D is a full matrix and its inverse has to be computed.
One can make two types of errors in hypothesis testing (Teunissen 2000). Type I error: rejec-

tion of
687

when
687

is true, that is, an outlier is detected, but there is no outlier; Type II error:
acceptance of

6]7
when

6]7
is false, that is, an outlier goes undetected.

3.2 Tracelessness condition

The sum of the diagonal gravity gradients has to be zero which is called Laplace’s equation or the
tracelessness condition (Heiskanen and Moritz 1967). For observed gradients one has182^�`_a_Qbc� ,d, be��f�f^59�"@

(7)

and + , �hgi +kjalml @ @@ +kjanon @@ @ +kjapqp
rs

(8)

under the assumption that there is no error correlation between the different gradients. One prob-
lem is that the gravity gradients suffer from systematic errors before external calibration of which
biases and scale factor errors are the most important. For GG the effect of a scale factor error is
the largest at a frequency of 0 Hz and also the bias is manifest at this frequency. Therefore, the
median of the sum of the diagonal gradients over the time interval considered is subtracted in (7).
Since the mean is more sensitive to outliers than the median, the former is not used.

The + D -matrix, needed in the test (6), is+ Dt� +kj lml b +kjKnun b +kj pqp^v (9)

If the along-track error correlation is neglected, then the +8jawow are diagonal and the w-teststatistic
becomes M ���o�x� � _a_ ���m�ybe� ,�, ���m�ybe� f�f ���o� �

medianX z|{jalml ���m�|b z|{j non ���o�yb z|{jap�p ���o� (10)

with
�t�����}�

and
�

the number of observation points. It is well known that the GOCE GG along-
track error correlation is high. Nevertheless, it may be that for outlier detection one can neglect
this correlation. Moreover, in the simulation study the +3jawow matrices are taken as scaled unit
matrices. If the along-track error correlation would not have been neglected, the + D

matrix would
have become full, which makes the computation of its inverse much more problematic. One could
of course work with distinct patches of, for example, 50 observations neglecting the correlation
between patches. However, the choice of the patch size is arbitrary and the observations within
one patch would be treated differently, which leads to an incoherent test method.

The advantage of the tracelessness condition is that the signal-to-noise ratio (SNR) is very
small. In fact, the SNR can not be smaller, which means that outliers that are well above the noise
can be detected easily. A disadvantage is that with this method one can not discriminate between
outliers in

� _a_ 
d� ,�, and
� f�f

.



3.3 Gravity gradient anomalies

The idea is to predict gravity gradients in the GOCE orbit points from a global gravity field model
and to compare them with the GOCE GG. The condition equation is132^����� ��~ ����5��"@

(11)

with error matrix +�, �J� +kj wuw @@ +;�}wow�� (12)

where the error of the model gradients is described by + � wow . Among others, this error depends on
the accuracy of the global model, the omission error, attitude errors and the accuracy of the orbit.

In this case, the + D -matrix is + Dt� +kj wow b +k� wuw�v (13)

If it is assumed that + D is diagonal (no along-track error correlation), then the w-teststatistic be-
comes M ���o��� �`�d� ���o� ��~ �d� ���o� �

medianX z {jawow ���m�yb z {�&wow ���o� (14)

for
�9�J���t�

. Also here the median is subtracted. Furthermore, in the simulation study the +
matrices are taken as scaled unit matrices.

One problem of condition (11) may be that the omission error is large, for example when a
GRACE-only model is used, or that the commission error is large, for example when OSU91A is
used. Thus the total

z
may be large and the test has little ‘power’. However, all GG are tested

separately and point wise and it is therefore an unambiguous test.

3.4 Overhauser spline interpolation

As an alternative to (11), consider the interpolation of anomalies along tracks. The interpolated
gravity gradient anomaly can be compared with the ‘measured’ anomaly, � ��� ����� ���-��~��d�3�
median, and 132 � 	��^D��� � � �d�}5?��@�
 � � ��!#!>
�% %�
 '�' (15)

with � 	��^D��� the interpolated value. The error of the interpolated anomalies depends on the interpo-
lation method, the orbit accuracy and on the errors of the observed GG. To a lesser extent also the
accuracy of the model gradients

~ �d�
has an effect on the error. There are many possible interpo-

lation methods but only Overhauser splines are considered (Overhauser 1968). The computations
are simple and fast, while the interpolation errors are small, see (Bouman and Koop 2003). For
equidistant data along track the condition equations take the form%S	|�Z��x��%S	�����b�%S	��>�K� � �� ��%S	�� { b�%S	�� { � v (16)

If there are
�

observations, then
�

may take the values
� ��� � � . (The weights given in (Bouman

and Koop 2003) are incorrect. The interpolation errors reported there become even smaller using
the correct weights.)

Under the assumption that the error matrices are scaled unit matrices, the w-teststatistic may
be approximated with M ���o��� �� � @ z < wuw 	�� {��a� 	�� {`� � � ����� P � (17)



Table 1: Noise, outlier and gravity gradient anomaly (
�y�d� �0~ ���

) properties, values in [mE].

Small set (86,351 pts) � lml � non � p�p
noise mean 1443.7 -805.2 2248.9

rms 2.2 4.4 5.7
outliers mean 0.5 0.3 0.0

rms 58.9 27.9 52.7
anomalies mean 0.0 1.5 -1.5

rms 36.4 35.3 58.9

Large set (5,097,835 pts) � lml � non � p�p
noise mean 0.0 0.0 0.0

rms 10.1 2.7 10.0
outliers mean 0.0 0.0 0.0

rms 78.5 78.5 78.5
anomalies mean 0.0 -0.4 0.4

rms 37.2 35.3 60.0

Table 2: Type I error for case 1 in % (no outliers, critical value is ��� ); T – tracelessness condition,
M – model gradients, S – spline interpolation, TMS – T + M or T + S.

Small data set Large data set
Method � lml � non � pqp � lml � non � pqp
T 0.0 0.0 0.0 4.7 4.7 4.7
M 6.2 6.0 5.9 6.3 6.4 6.2
S 0 0 0 0 0 0
TMS 0 0 0 0.3 0.3 0.3

for
��� � ��� � � , with weights � 	�� { � � 	�� { � � �

, � 	������ � 	 �>�¡�"¢
and � 	$� � �

. ( £ � {� � � @
)

The advantage of this method is that each GG can be tested separately. A disadvantage is
that several consecutive points are combined, which may hinder the identification of points with
outliers (masking).

4 Simulation study

Two data sets with different characteristics were studied. One is a small data set with a length of
1 day which contains various types of outliers. The second data set has a length of 59 days and
contains single and bulk outliers. These gradients allow for gravity field analysis (GFA).

The first data set used in this study consists of the diagonal gravity gradients
� _a_

,
� ,d, and

� f�f
which were simulated using EGM96 (Lemoine et al. 1998) for a 1 day orbit with a sampling rate
of 1 s. Simulated, correlated noise was added to the signals, the data statistics are given in Table 1.
The model gradients were generated using OSU91A (Rapp et al. 1991). The second data set used
in this study also consists of the diagonal gravity gradients which were simulated using OSU91A
for a 59 day orbit with a sampling rate of 1 s (over five million data points). Simulated, correlated
noise was added to the signals. In this case, model gradients were generated using EGM96.

Errors other than outliers and simulated noise were not considered in this study, that is, orbit
errors, omission errors, etc. are all zero.
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Figure 1: Test values for tracelessness condition, case 1, small data set. The dashed lines denote
the critical value ��� .
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Figure 2: Test values for
� _a_ �0~ _a_

, case 1, small data set.
� _a_

are simulated GOCE gradients,
whereas

~ _a_
are model gradients. Test values for

� ,�, and
� f�f

are similar to
� _a_

. The dashed
lines denote the critical value ��� .
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Figure 3: Test values for � _a_ spline interpolation, case 1, small data set. Test values for � ,�, and� f�f are similar to � _a_ .

4.1 Case 1: no outliers

A first test was done that used the noisy gradients without any outliers (case 1). Fig. 1 - 3 show the
w-test values for the tracelessness condition, gradient anomalies and spline interpolation respec-
tively (small data set), while the type I error is summarised in Table 2. Given the critical value ofP � � , approximately 4.6% of the observations should be rejected although they are correct. For
the tracelessness condition, however, the type I error is 0% for the small data set, while it is ac-
cording to the expected value for the large data set. The former may be due to the error correlation
between the different simulated diagonal gradients. In the small data set these errors are heavily
correlated, which is neglected, whereas there is no error correlation between different gradients for
the large data set. The type I error is also 0% for the spline interpolation for both data sets. Both
the small and the large data sets have errors with a high spatial correlation along tracks. These
long wavelength errors, however, cancel in the spline interpolation as it is a local interpolation
method. This could explain the small type I error.

The model gradients have a large type I error as it is dominated by the model error, that is,
the difference between EGM96 and OSU91A. The type I error is probably larger than expected
because we have used a simple scaled unit matrix as error covariance matrix. Despite the some-
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Figure 4: Test values for � _a_ spline interpolation, case 2a. Panel zooms in on W � � �¥¤
min. The

dashed lines denote the critical value ��� .

what larger type I error, model gradients may be usefull. First of all, it may be that at the time
GOCE flies a more accurate gravity field model is available, which would reduce the type I error.
Secondly, with the gradient anomalies one can test the individual gradients point wise. In contrast,
with the trace condition one tests point wise the sum of three gradients, while with spline interpo-
lation individual gradients are tested on an interval. Thus the three methods are complementary.

A combination of the three methods gives good results which is shown in Table 2. In this case
combined means that if an outlier is detected by the tracelessness condition and if it is confirmed
by a 2nd method, an outlier is flagged. The type I error is close to zero for all gradients.

4.2 Case 2: outliers on ¦ _a_�§ ¦ ,�, and ¦ f�f
To the small data set outliers with the following characteristics were added (case 2a): A total of
3891 randomly distributed single outliers for

� _a_
with an absolute size varying between 0.07 E

and 0.1 E; An offset of 0.5 E during one minute (
�¥� � @ � � ¤

s) for
� ,�, and a bulk of outliers

during six minutes (
�¨�O©S@V@V@V@ � ©S@ � © ¤

s) with an absolute size varying between 0.07 E and 0.1
E; A total of 994 ‘twangs’, randomly distributed, for

� f�f
, that is, an outlier at

�ª���K	
is followed

by an outlier with opposite sign and of the same size at
�]��� 	 �>�

. In total �Q« ¤V¤ ¢¬��� ¤V­V­
outliers

with absolute size between 0.07 E and 0.1 E. For the large data set 83153 outliers were added to all
three gradients with an absolute size varying between 0.05 E and 1.8051 E (case 2b). The outliers
were randomly distributed single outliers as well as bulk outliers, see Table 1 for data statistics.

The tracelessness condition detects almost all outliers, see Table 3 and 4. If we would use the
tracelessness condition only and no other method then one cannot discriminate which diagonal
GG contains an outlier and all three GG would be flagged if one of them does contain an outlier,
which leads to large type I errors.

Most of the outliers are detected when gradient anomalies are used, but the type II error can
be relatively large. Only 3/4 of the

� f�f
outliers of the small data set are detected for example,

which is caused by the larger GOCE GG error and the larger difference between the ‘true’ GG
and the model GG. The type I error is of course at the level of case 1, see Table 3 and 4. As an
alternative to model gradients, one could also filter the GOCE GG with outliers and use these as
‘model gradients’. A 2nd order low-pass Butterworth filter has been used with a cut-off frequency
of 0.2 Hz. Except for the gradients with an offset, the method with filtered gradients detects most
of the outliers. The type I error can be large because low-pass filtering not only reduces the size
of the outliers, but redistributes their power over neighbouring points as well. An offset tends to
cancel and is therefore hard to detect with filtered gradients.

With spline interpolation the major part of the
� _a_

outliers (case 2a) is detected, but many
valid observations are flagged as outliers, see Table 3. The type I error is large because one outlier
may affect five consecutive w-test values, see Fig. 4. As an alternative to this outlier detection
in one step, one could use an iterative procedure, that is, reject the global maximum, replace the



Table 3: Detected outliers for case 2a in % (outliers on all three diagonal gradients, small data
set, critical value is �k� ); T – tracelessness condition, M – model gradients, F – filtered gradients,
S – spline interpolation, TMS – T + M or T + S, TFS – T + F or T + S.� lml � non � p�p

Method correct type I correct type I correct type I

T 99.9 2.6 99.8 6.7 99.9 4.8
M 93.6 5.9 92.6 6.0 76.9 5.8
F 99.8 23.5 84.5 0.0 100 2.2
S 98.9 11.6 77.6 0.0 99.5 2.0

TMS 99.8 0.5 98.6 0.4 99.7 0.4
TFS 99.9 0.7 87.1 0 99.9 0.1

Table 4: Detected outliers for case 2b in % (outliers on all three diagonal gradients, large data
set, critical value is �k� ); T – tracelessness condition, M – model gradients, F – filtered gradients,
S – spline interpolation, TMS – T + M or T + S, TFS – T + F or T + S.� lml � non � p�p

Method correct type I correct type I correct type I

T 99.8 7.7 99.9 7.7 99.9 7.7
M 96.8 5.9 97.5 6.2 92.3 5.9
F 99.0 5.6 99.7 10.5 98.9 5.6
S 86.8 2.2 98.6 4.7 86.8 2.2

TMS 97.7 0.6 99.8 0.8 94.6 0.6
TFS 99.6 0.4 99.9 0.8 99.6 0.4

associated observation with the interpolated value, find next global maximum, etc. The iterative
procedure was implemented and tested, and the type I error decreased significantly. However, also
the number of detected outliers decreased, which has a negative effect on the combination solution
as well. Therefore, the iterative procedure is abandoned. The spline interpolation method detects
most of the bulk outliers, but is unable to detect the offset, see Table 3. An offset cancels using
spline interpolation and cannot be detected directly. The type I error is small in this case because
the w-test ‘side lobes’ drown in the bulk outliers. The results of the large data set (case 2b) suggest
that the larger the GG noise the smaller the number of detected outliers. The GG

� _a_
and

� f�f
have

a higher noise level than
� ,d, , while the number of detected outliers is the largest for the latter.

The last two rows of Table 3 and 4 show that a combination of three methods yields excellent
results. An outlier is flagged if the tracelessness condition is confirmed by one of two methods.
In general the method with model gradients detects less outliers than the method with filtered
gradients. However, the latter is less suited to detect an offset. For a critical value of 2, about 99%
of the outliers are detected, while the type I error is small, below 1%. The expected type I error is
4.6% which is much larger. This is likely due to the combination of the three methods.

Finally, Fig. 5 shows the gravity field anomaly differences between OSU91A and a quick-look
GFA solution up to degree and order 250. As input the TFS cleaned GG were used (case 2b).
The rms difference, excluding polar caps of 10 ® , is 9.8 mGal, which is somewhat larger than the
difference when gradients without outliers are used in the GFA (6.7 mGal). When the TFS cleaned
GG are used with an additional outlier search in the GFA, 100% of the outliers are detected and
the rms gravity anomaly difference is only 6.9 mGal, see also (Bouman et al. 2004a).
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Figure 5: Gravity anomaly differences OSU91A – QL-GFA (log scale), pre-processing outlier
detection using TFS.

5 Conclusions and outlook

The tracelessness condition is the baseline method for the quick-look outlier detection algorithm
studied here. If an outlier is detected by this method and if it is confirmed by either model (or
filtered) gradients and/or by spline interpolation, then an outlier is flagged. Although the individual
methods have their disadvantages, their combination yields high outlier detection rates and only
a small number of falsly detected outliers. The w-test, which was used, explicitely accounts for
the GG errors. However, to obtain a managable solution, the error correlations were neglected
and it was even assumed that the error matrices are scaled unit matrices. Despite the heavy error
correlation, outliers can be very well detected. It therefore seems that the simplifications do little
harm.

To further improve the performance, the spline interpolation may be replaced by, for exam-
ple, least-squares prediction. The outlier detection results may also improve by taking the spatial
correlation between the observables into account using least-squares collocation (LSC), see (Tsch-
erning 1991). It may be that the turn-around time of the current GRAVSOFT implemenation of
LSC (Tscherning 1974) is acceptable for operational use. This needs, however, to be studied.
Future simulation studies should also include the

� _ , , � _af and
� , f gradients. In addition, more re-

alistic GOCE error characteristics should be used, and other errors, such as orbit errors or attitude
quaternion errors, should be accounted for.
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Abstract.  The European Gravity and Geoid Project 
(EGGP) is a project within IAG Commission 2, re-
porting to Sub-commission 2.4. The main goal of 
the project is to compute an improved European 
geoid and quasigeoid model. This appears to be 
possible now because significant new and improved 
data sets have become available since the last com-
putation in 1997 (EGG97). These improvements 
include better global geopotential models from the 
CHAMP and GRACE missions, better digital ele-
vation models (DEMs) in some regions (e.g., new 
national DEMs, SRTM3, GTOPO30), updated 
gravity data sets for selected regions, updated ship 
and altimetric gravity data including improved 
merging procedures, the use of GPS/levelling data, 
as well as improved modelling and computation 
techniques. 

An overview is given on the project structure, the 
computation strategy, the available data sets, the 
expected accuracies, the time schedule, and the 
work done so far. The primary input data sets are 
high-resolution gravity and terrain data supplemen-
ted by a state-of-the-art global geopotential model. 
The general computation strategy is the remove-
restore procedure. The initial computations are 
based on the spectral combination approach with 
integral formulas evaluated by 1D FFT. First results 
based on an updated terrestrial gravity data set and 
GRACE geopotential models show significant im-
provements (up to 60 %) as compared to GPS/-
levelling. Moreover, also the tilts, existing in previ-
ous solutions, have been reduced to typically below 
0.1 ppm. 
 
Keywords.  Geoid, quasigeoid, gravity field model-
ling, GPS/levelling, EGGP, CHAMP, GRACE  

 
 
 
1  Introduction 
 
The latest high-resolution European geoid and 
quasigeoid models (EGG97) were computed at the 
Institut für Erdmessung (IfE), University of Hanno-
ver, acting since 1990 as the computing center of 

the International Association of Geodesy (IAG) 
Sub-commission for the European Geoid (prede-
cessor of the EGGP), for details cf. Denker and 
Torge (1998). EGG97 is based on high-resolution 
gravity and terrain data in connection with the 
global geopotential model EGM96. The evaluation 
of EGG97 by GPS/levelling data revealed the 
existence of long wavelength errors at the level of 
0.1 to 1 ppm, while the agreement over distances up 
to about 100 km is at the level of 0.01 m in many 
areas with a good quality and coverage of the input 
data (Denker and Torge, 1998; Denker, 1998).  

Since the development of EGG97, significant new 
or improved data sets have become available, in-
cluding strongly improved global geopotential mo-
dels from CHAMP and GRACE, new national and 
global terrain data sets, new or updated gravity data 
sets, improved altimetric results, as well as new 
GPS/levelling campaigns. Furthermore, also the 
combination of ship and altimetric data has been 
refined, and new gravity field modelling techniques, 
e.g., wavelet techniques, fast collocation, etc., have 
become operational.  

Considering all these advancements, a complete 
re-computation of the European geoid/quasigeoid is 
appropriate and promises significantly improved ac-
curacies, especially at long wavelengths. Therefore, 
after the IUGG General Assembly in Sapporo in 
2003, it was decided to support this task in the form 
of an IAG Commission 2 Project, named CP2.1 and 
entitled “European Gravity and Geoid Project 
EGGP”. The project is reporting to Sub-commission 
2.4 and has strong connections to the International 
Gravity Field Service (IGFS), with its centers Bu-
reau Gravimétrique International (BGI), Internation-
al Geoid Service (IGeS), National Geospatial-Intel-
ligence Agency (NGA), and GeoForschungsZen-
trum Potsdam (GFZ), as well as to several other 
IAG bodies, e.g., EUREF. The EGGP is running 
within the 4-year period from 2003 to 2007 until the 
next IUGG General Assembly. The project is or-
ganised by a steering committee (H. Denker (Chair), 
J.-P. Barriot, R. Barzaghi, R. Forsberg, J. Ihde, A. 
Kenyeres, U. Marti, I.N. Tziavos) and has about 50 
national delegates (project members) from most of 



  

  

the countries in Europe. The EGGP terms of 
reference can be found in EGGP (2003). 

This contribution gives an overview on the 
general computation strategy and on the progress in 
the collection of gravity data, terrain data, and 
global geopotential models from the new space 
missions CHAMP and GRACE. First updated 
geoid/quasigeoid solutions are presented based on 
the new global geopotential models from CHAMP 
and GRACE. Moreover, results from an improved 
terrestrial gravity data set, including reprocessed 
ship gravity and new altimetric anomalies, are 
presented. 
 
2  Computation Strategy 

 
The basic computation strategy is based on the 
remove-restore technique, considering high-resolu-
tion terrestrial gravity and terrain data in combina-
tion with a state-of-the-art global geopotential 
model (probably based on the GRACE mission). 
Terrain reductions will be applied to smooth the 
data and to avoid aliasing effects. At present, the 
residual terrain model (RTM) technique according 
to Forsberg and Tscherning (1981) is favoured. 
Bathymetry and density data may be considered in 
special test areas. Moreover, GPS/levelling data 
will be used for control purposes, and may also be 
used for a combined solution (e.g., Denker et al., 
2000), depending on the quality and availability of 
data. All data sets will be referred to uniform hori-
zontal, vertical, and gravity reference systems. The 
collection of the relevant data sets is pursued by the 
steering committee and the members of the project. 

A significant problem with high-resolution grav-
ity and terrain data is the confidentiality of data, 
which must be assured to most of the data owners. 
For this reason, it was decided to have only one 
data and computation center at the Institut für Erd-
messung (IfE), University of Hannover. In addition, 
a second confidential gravity data center is setup at 
Bureau Gravimétrique International (BGI) to use 
the expertise of BGI in the validation and cleaning 
of large gravity data sets. The inclusion of data in 
the confidential BGI project database requires 
separate agreements between the data owners and 
BGI, and there will be no connection to the BGI 
public database. 

The primary gravity field quantity to be com-
puted will be the height anomaly or the quasigeoid 
undulation, with the advantage that only gravity 
field observations at the Earth’s surface and in its 
exterior enter into the calculation, avoiding assump-
tions about the Earth’s interior gravity field. A 

geoid model is then derived by introducing a density 
hypothesis, which should be identical to the one 
used for the computation of corresponding ortho-
metric heights. 

Initially, the gravity modelling at IfE will be 
based on the spectral combination technique with 
integral formulas (e.g., Wenzel, 1982). In this 
method, the combination of terrestrial gravity data 
and a global geopotential model is done by means of 
spectral weights, which depend on the accuracy of 
the input data sets. Due to the high accuracy of the 
global models at long wavelengths, the terrestrial 
data mainly contribute the shorter wavelength com-
ponents. Lateron, IfE may also test other modelling 
techniques, e.g., least squares collocation or wave-
lets. Moreover, it is planned to use the fast collo-
cation approach developed by the Milan group (e.g., 
Sansò and Tscherning, 2003). Regarding the time 
frame, it is planned to have the final geoid/quasi-
geoid models in 2007 and preliminary solutions in 
2005 and 2006. 

The final goal is to strive for an accuracy of 
0.01 m for the computed geoid/quasigeoid models 
(for distances up to some 100 km). Obviously, this 
is only possible in areas with a good coverage and 
quality of the input gravity and terrain data. The 
data requirements can be derived from theoretical 
and numerical studies including spectral analysis. 
With respect to the gravity data, a spacing of 2 to 
5 km and an accuracy at the level of 1 mgal (white 
noise) is sufficient (Denker, 1988; Forsberg, 1993; 
Grote, 1996), but on the other hand even small 
systematic gravity errors affecting large regions may 
integrate up to significant geoid errors. For the 
elevation models, a resolution of roughly 100 m to 
1000 m is adequate for alpine to low relief, 
respectively, with an accuracy at the level of some 
ten meters. 
 
3  Recent Progress in Data Collection 

 
3.1 Gravity Data 
 
Since the start of the project, significant improve-
ments of the gravity database have been made, in-
cluding new data sets for several countries, e.g., 
Belgium, Luxemburg, Germany, Slovenia, Switzer-
land, and Netherlands. Moreover, positive respon-
ses, indicating a data update in the near future, were 
received from Austria, the Baltic States, Croatia, 
France, Greece, Poland, Serbia, Russia, the Scan-
dinavian countries, etc. In addition to this, also the 
public domain data set from the Arctic Gravity 
Project became available (Forsberg and Kenyon, 



  

 

2004). As one example to document the progress in 
the collection of gravity data, Fig. 1 (bottom) de-
picts the old status (EGG97, Denker and Torge, 
1998) and the new status in July 2004 for an area 
covering Belgium, Luxemburg, Netherlands, as 
well as parts of France and Germany. 

In addition, the older gravity data sets were re-
vised regarding the underlying reference systems, 
the target systems being ETRS (European Ter-
restrial Reference System), UELN (United Euro-
pean Levelling Network) and absolute gravity. 
Within the EGGP, only data which can be related 
without any doubts to the target reference systems 
will be included in the primary data base. 

Significant progress was also made in the collec-
tion and reprocessing of ship gravity data (e.g., at 
IfE and other institutions). The ship gravity data, 
collected from several institutions for the European 
Seas, were crossover adjusted using a bias per track 
error model in order to reduce instrumental and 
navigational errors, incorrect ties to harbour sta-
tions, etc. (for details see Denker and Roland, 
2003). An “original” and an “edited” data set were 

considered, where the edited data set excluded data 
affected by ship turns, data in the Red Sea, data 
from short tracks (< 3 points), and tracks with large 
crossover differences. Table 1 shows the crossover 
statistics for both data sets before and after the 
adjustment. The table clearly shows that the editing 
of some very bad observations resulted already in an 
improvement of the crossover differences by a 
factor of two, while the crossover adjustment again 
reduced the crossovers by a factor of two. Before 
the adjustment, the RMS crossover difference is 
15.5 mgal for the original and 8.4 mgal for the 
edited data set; the corresponding values after the 
adjustment are 7.0 mgal and 4.7 mgal, respectively. 

 
 

 

 

 

 

 

Fig. 1.  Locations of terrestrial gravity data for entire Europe (top) and a sub-area (bottom). The left part shows the status for 
EGG97 and the right part shows the status of July 2004. 
 
Table 1. Statistics of crossover differences from ship gravity 
observations. Units are mgal. 
 

data set original original edited edited
adjustment before after before after
# 89,328 89,328 78,929 78,929
Mean 0.20 -0.02 0.04 -0.01
RMS 15.48 7.01 8.37 4.69
Min -258.43 -204.98 -109.91 -48.56
Max +259.54 +198.37 +128.40 +49.16
 



  

  

The improvement of the ship data by editing and 
crossover adjustment was also illustrated by com-
parisons with altimetric anomalies from the KMS02 
model (Andersen et al., 2003), giving a RMS 
difference of 18.0 mgal for the original data set and 
10.2 mgal for the edited data set, both before the 
adjustment. The crossover adjustment further 
reduced the RMS difference to 7.8 mgal for the 
edited data set, proving the effectiveness of the 
entire procedure. In sub-areas, e.g., around Iceland, 
the RMS difference between the ship and KMS02 
data is only 4.2 mgal.  

Fig. 1 (top) depicts the locations of gravity data 
for entire Europe; the left part shows the status for 
EGG97, and the right part shows the status for July 
2004 including the reprocessed ship gravity data. 

 
3.2 Digital Elevation Models (DEMs) 
 
For the EGG97 model, digital elevation models 
(DEMs) were available with a resolution of about 
200 m for most countries in Central and Western 
Europe, while coarser grids with a resolution of 
0.5 km to 10 km had to be used for the remaining 
parts of Europe. For EGG97, only in Germany a 
DEM with a very high resolution of 1" × 1" (approx. 
30 m) was available. Meanwhile, also Switzerland 
has released a 1" × 1" DEM, and Austria has 
indicated the release of a corresponding model. 
However, especially in Eastern Europe and some 
other areas, fill-ins from global public domain data-
bases have to be used, either because high-resolu-
tion DEMs do not exist or are not released for con-
fidentiality reasons. For this purpose, the SRTM3 
model with a resolution of 3" × 3" (JPL, 2004) and 
the public domain global model GTOPO30 with a 
resolution of 30" × 30" (LP DAAC, 2004) can be 
used. The SRTM3 model has been released recently 
from the analysis of the Shuttle Radar Topography 
Mission as a preliminary and “research-grade” 
model, covering the latitudes between 60°N and 
54°S. On the other hand, the GTOPO30 model has 
global coverage and was derived already in 1996 
from several raster and vector sources of topo-
graphic information (LP DAAC, 2004).  

The SRTM3 and GTOPO30 DEMs were eval-
uated at IfE by comparisons with national DEMs 
for Germany, based on 1" × 1" data (Denker, 
2004a). The comparisons of the national and 
SRTM3 models revealed that one of the national 
models contained less accurate fill-ins in some 
areas outside of Germany. After excluding these 
areas, the differences between the best national 
model and the SRTM3 DEM show a standard 

deviation of 7.9 m with maximum differences up to 
about 300 m. The largest differences are located in 
opencast mining areas and result from the different 
epochs of the data. Histograms of the differences 
show a clear deviation from the normal distribution 
with a long tail towards too high SRTM3 elevations. 
Moreover, the presently available SRTM3 “re-
search-grade” models contain numerous data voids 
(undefined elevations), which cause significant 
problems. The filling of these data gaps by inter-
polation must be handled with care, especially for 
larger gaps in mountainous areas (Denker, 2004a). 

The evaluation of the GTOPO30 model by nation-
al and SRTM3 DEMs demonstrated that in Germany 
the longitudes of GTOPO30 should be increased by 
30" (one block). The longitude shift reduced the 
standard deviation of the differences to the national 
and SRTM3 models by roughly 75 %, yielding final 
values of about 6.8 m and 11.5 m for the national 
and SRTM3 models, respectively. 

Thus, the national DEMs, augmented by the 
SRTM3 and GTOPO30 data will allow the creation 
of DEMs for entire Europe with a resolution of at 
least 30" × 30", which is a significant improvement 
compared to the previous EGG97 computation. 

 
3.3 Global Geopotential Models 

 
The CHAMP and GRACE missions have led to 
significant improvements in the modelling of long 
wavelength gravity signals. This is documented, 
e.g., by the accumulated formal geoid error, which 
does not exceed 0.01 m for spherical harmonic 
degrees up to about 25 for the CHAMP models 
(e.g., Reigber et al., 2004a) and 75 for the GRACE 
models (e.g., Reigber et al., 2004b). On the other 
hand, the limit of 0.01 m is already exceeded at 
degree 8 for the EGM96 model. Correspondingly, 
the limit of 0.05 m is exceeded at about degree 20 
for EGM96, 40 for the CHAMP models, and 90 for 
the GRACE models. 

The new geopotential models from the CHAMP 
and GRACE missions, in combination with 
terrestrial gravity data of good quality (±1 mgal) and 
coverage, allow the computation of significantly 
improved continental-scale geoid and quasigeoid 
models. Error estimates based on the degree 
variance approach result in standard deviations of 
about 0.02 m to 0.03 m for solutions based on the 
GRACE models, with the largest contribution (about 
0.02 m) coming from the degree range 90 to 360. 
The corresponding values for geoid solutions based 
on the CHAMP models and EGM96 are about 
0.04 m and 0.06 m, respectively. 



  

4  First Results 
 

Updated European geoid/quasigeoid models were 
computed based on the new CHAMP and GRACE 
geopotential models. The computations were done 
using the EGG97 terrestrial gravity data set as well 
as an updated data set (section 3.1). The computa-
tions were done using the remove-restore technique 
in connection with the least squares spectral com-
bination method. The spectral weights were derived 
from the error estimates of the global models and 
the terrestrial data. Terrain reductions were done 
using the RTM method. The computation area is 
25°N – 77°N and 35°W – 67.4°E. The grid spacing 
is 1' × 1.5', yielding 3,120 × 4,096 grid points. The 
GRS80 constants, the zero degree undulation terms, 
and the zero-tide system were used throughout all 
computations (for details see Denker, 2004b). 

 All computed quasigeoid models were evaluated 
by GPS/levelling data from the European EUVN 
data set (Ihde et al., 2000) and by national cam-
paigns. Fig. 2 shows the differences (after subtract-
ing a common bias) between 166 stations of the 
EUVN GPS/levelling data set (only stations with 
UELN normal heights were used) and the EGG97 
gravimetric quasigeoid based on EGM96 (left part), 
as well as a new solution (right part) based on the 
EIGEN-GRACE02S geopotential model (Reigber 
et al., 2004b); the terrestrial gravity data are iden-
tical in both solutions (status of EGG97). Fig. 2 
shows clearly that the long wavelength discrepancy 
over Central Europe almost disappears for the 
GRACE solution; the largest discrepancies remain 

at coastal stations, especially around the Mediterra-
nean Sea where the gravity data quality is weak. The 
RMS difference is 0.262 m for EGG97 and reduces 
to 0.230 m for the EIGEN-GRACE02S solution 
(12 % improvement). Correspondingly, a solution 
based on the CHAMP EIGEN-3 model (Reigber et 
al., 2004a) gives a RMS difference of 0.238 m (9 % 
improvement). When using the updated terrestrial 
gravity data set from 2004 in combination with the 
EIGEN-GRACE02S model, the RMS difference re-
duces to 0.203 m (23 % improvement compared to 
EGG97). Furthermore, when transforming the GPS 
results (according to Poutanen et al., 1996) from the 
non-tidal to the zero-tide system, which is used for 
the quasigeoid solutions, another slight reduction of 
the RMS difference to 0.197 m can be observed 
(25 % total improvement versus EGG97). Tilt para-
meters were also computed, but not considered any 
further as they were less than 0.1 ppm in all cases. 

Table 2.  RMS differences from comparisons of GPS/level-
ling with EGG97 and a new quasigeoid based on EIGEN-
GRACE02S. A constant bias is subtracted. Units are m. 
 

Country # 
pts.

EGG97/
EGM96

EGG04/ 
EIGEN-GRACE02S 

Improvement

Belgium 31 0.061 0.046  25 % 
France 965 0.128 0.084  34 % 
Germany 678 0.107 0.041  62 % 
Hungary 299 0.089 0.057  36 % 
Netherlands 84 0.035 0.031  11 % 
Switzerland 147 0.084 0.063  24 % 
EUVN 166 0.262 0.230  12 % 
 

Additional comparisons of EGG97 and the new 
quasigeoid solution based on EIGEN-GRACE02S 
 
 

 

 

 
 

Fig. 2.  Comparison of EGG97 quasigeoid solution (left) and a new solution based on the EIGEN-GRACE02S global model 
(right) with GPS/levelling data from the EUVN campaign. A constant bias is subtracted. 
  



  

  

with several national GPS/levelling data sets are 
shown in Table 2. Again, both solutions use identi-
cal terrestrial gravity data (status EGG97). The 
table provides the RMS differences for both solu-
tions after subtracting a common bias. The table 
clearly shows that in all cases the use of the new 
GRACE model improves the geoid/quasigeoid mo-
delling significantly. The maximum improvement is 
more than 60 % for the German data set. A more 
detailed analysis shows that the tilts, existing in 
EGG97, are reduced to typically below 0.1 ppm, 
i.e. by one order of magnitude in some cases. 

Furthermore, with the updated solutions based on 
the GRACE models, accurate determinations of W0 
(reference geopotential of the vertical datum) and 
vertical datum unifications become possible. When 
considering the 2004 terrestrial gravity data set, the 
EIGEN-GRACE02S model, the EUVN GPS/level-
ling data, and a transformation of the GPS heights 
to the zero-tide system, an estimate of W0 (Europe) 
of 62,636,857.02 ±0.15 m2s-2 is obtained. The 
corresponding value from the German GPS/-
levelling data is 62,636,856.91 ±0.02 m2s-2. Both 
values are in good agreement with the value 
62,636,857.25 m2s-2 published for Europe by Burša 
et al. (2002). However, the European values deviate 
by about 1.0 m2s-2 from the global best estimates 
(e.g., Burša et al., 2002). 
 
5  Conclusions 

 
Significant progress was made within the frame-
work of the European Gravity and Geoid Project 
EGGP regarding the collection and homogenization 
of high-resolution gravity and terrain data. Several 
new data sets became available, and especially the 
new geopotential models from the CHAMP and 
GRACE missions improved the geoid/quasigeoid 
modelling very much. In the GPS/levelling compa-
risons, the RMS differences reduced up to about 
60 % when using the GRACE models and up to 
30 % for the solutions based on CHAMP, as com-
pared to the previous EGG97 model relying on 
EGM96. In addition, the tilts, existing in EGG97, 
were also reduced to typically below 0.1 ppm. Due 
to the support with data by numerous people and 
agencies, further improvements are to be expected 
in the future. 
 
References 
 

Andersen, O.B., P. Knudsen, S. Kenyon, and R. Trimmer 
(2003). KMS2002 Global Marine Gravity Field, Bathy-
metry and Mean Sea Surface. Poster, IUGG2003, 
Sapporo, Japan, June30-July11, 2003. 

Burša, M., et al. (2002). World height system specified by 
geopotential at tide gauge stations. IAG Symposia 124: 
291-296, Springer Verlag. 

Denker, H. (1988). Hochauflösende regionale Schwerefeld-
modellierung mit gravimetrischen und topographischen 
Daten. Wiss. Arb. Fachr. Verm.wesen, Univ. Hannover, 
Nr. 156. 

Denker, H. (1998). Evaluation and Improvement of the 
EGG97 Quasigeoid Model for Europe by GPS and 
Leveling Data. Reports of the Finnish Geodetic Institute, 
98:4, 53-61, Masala, 1998. 

Denker, H. (2004a). Evaluation of SRTM3 and GTOPO30 
terrain data in Germany. Proceed. GGSM2004, Porto. 

Denker, H. (2004b). Improved European geoid models based 
on CHAMP and GRACE results. Proceed. GGSM2004, 
Porto. 

Denker, H., M. Roland (2003). Compilation and evaluation of 
a consistent marine gravity data set surrounding Europe. 
Proceed., IUGG2003, Sapporo, Japan, June30-July11, 
2003. 

Denker, H., W. Torge (1998).  The European gravimetric 
quasigeoid EGG97 – An IAG supported continental enter-
prise. IAG Symposia 119:249-254, Springer Verlag. 

Denker, H., W. Torge, G. Wenzel, J. Ihde, U. Schirmer 
(2000). Investigation of Different Methods for the 
Combination of Gravity and GPS/Levelling Data. IAG 
Symposia 121:137-142, Springer-Verlag. 

EGGP (2003). Commission Project 2.1, European Gravity 
and Geoid, Terms of Reference and Objectives, http:// 
www.ceegs.ohio-state.edu/iag-commission2/cp2.1.htm. 

Forsberg, R. (1993). Modelling the fine-structure of the 
geoid: methods, data requirements and some results. 
Surveys in Geophys. 14: 403-418. 

Forsberg, R., S. Kenyon (2004). Gravity and geoid in the 
Arctic Region – The northern GOCE polar gap filled. 
Proceed. 2nd Internat. GOCE Workshop, Esrin, March 8-
10, 2004. 

Forsberg, R., C.C. Tscherning (1981). The use of height data 
in gravity field approximation by collocation. Journal of 
Geophys. Research 86: 7843-7854. 

Grote, T. (1996). Regionale Quasigeoidmodellierung aus 
heterogenen Daten. Wiss. Arb. Fachr. Verm.wesen, Univ. 
Hannover, Nr. 212. 

Ihde, J. et al. (2000). The height solution of the European 
Vertical Reference Network (EUVN). Veröff. Bayer. 
Komm. für die Internat. Erdmessung, Astronom. Geod. 
Arb., Nr. 61: 132-145, München. 

JPL (2004). SRTM – The Mission to Map the World. Jet Pro-
pulsion Laboratory, California Inst. of Techn., http:// 
www2.jpl.nasa.gov/srtm/index.html. 

LP DAAC (2004). Global 30 Arc-Second Elevation Data Set 
GTOPO30. Land Process Distributed Active Archive 
Center, http://edcdaac.usgs.gov/gtopo30/gtopo30.asp. 

Poutanen, M., M. Vermeer, J. Mäkinen (1996). The perma-
nent tide in GPS positioning. J. of Geodesy 70: 499-504. 

Reigber, Ch., et al. (2004a). Earth gravity field and seasonal 
variability from CHAMP. Earth Observation with 
CHAMP: 25-30, Springer Verlag.  

Reigber, Ch., et al. (2004b). An Earth gravity field model 
complete to degree and order 150 from GRACE: EIGEN-
GRACE02S. J. of Geodynamics, accepted June 25, 2004. 

Sansò, F., C.C. Tscherning (2003). Fast spherical collocation: 
theory and examples. Journal of Geodesy 77:101-112. 

Wenzel, H.-G. (1982). Geoid computation by least squares 
spectral combination using integral kernels. Proceed. IAG 
General Meet., 438-453, Tokyo.  


	Kotsakis-revised.pdf
	The effect of an unknown data bias in least-squares adjustment: some concerns for the estimation of geodetic parameters
	
	
	
	
	
	
	
	C. Kotsakis







	Department of Geodesy and Surveying, Aristotle University of Thessaloniki
	University Box 440, Thessaloniki, GR-54124, Greece, Email: kotsaki@topo.auth.gr


	Denker.pdf
	1  Introduction
	2  Computation Strategy
	3  Recent Progress in Data Collection
	3.1 Gravity Data
	3.2 Digital Elevation Models (DEMs)
	3.3 Global Geopotential Models
	4  First Results
	5  Conclusions
	References


