
The performance of the space-wise approach  
to GOCE data analysis, when statistical 
homogenization is applied 
F. Migliaccio 
DIIAR - Politecnico di Milano - Piazza Leonardo da Vinci, 32 - 20133 Milano - Italy 
 
M. Reguzzoni 
Geophysics of Lithosphere Department - Italian National Institute of Oceanography and Applied Geophysics (OGS) 
Borgo Grotta Gigante, 42/c - 34010 Sgonico (Trieste) - Italy 
 
F. Sansò 
DIIAR - Politecnico di Milano - Polo Regionale di Como - Via Valleggio, 11 - 22100 Como - Italy 
 
C.C. Tscherning 
Department of Geophysics - University of Copenhagen - Juliane Maries Vej, 30 - 2100 Copenhagen - Denmark 
 
 
Abstract. The space-wise approach to GOCE data 
reduction exploits the spatial correlation of the 
observations by “projecting” them on a spherical 
grid at mean satellite altitude; to this aim a local 
collocation prediction based on a global covariance 
function of the potential T can be used. Since the 
implicit hypothesis of rotational invariance is not 
fulfilled by the gravitational potential, the global 
covariance function cannot describe the local 
characteristics of the field in the different 
interpolation areas. As a consequence the estimation 
error of the gridded values is not homogeneously 
distributed all over the reference sphere, but it is 
much higher over the Himalaya, the Alps, the 
Andes, etc., i.e. over areas where the random field 
presents an “unexpectedly” high variability. These 
errors may degrade the performance of the 
subsequent spherical harmonic analysis for the 
recovery of the potential coefficients, especially at 
very high degrees. 

In the light of this reasoning, the whole 
procedure of the space-wise approach is expected to 
benefit by a priori making the analysed random 
field smoother and thereby more homogeneous. 
This can be done by first determining a global 
model which describes the main features of the 
potential distribution on the spherical grid and then 
by subtracting it from the observed data once and 
for all. The signal covariance function has to be 
corrected accordingly. In principle, the resulting 
field is more “stationary”, also when it is regarded 
as a time-wise process. 

This procedure has been applied on simulated 
GOCE data, showing that the errors of the estimated 
spherical    harmonic    coefficients    slightly    but 

systematically decrease. Moreover the improvement 
is much more significant in critical areas. 
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1  An introduction to the problem 
 
The paper deals with an attempt at assessing the 
effects of inhomogeneities of the gravity field on the 
space-wise approach as applied to the GOCE 
mission (ESA, 1999), as well as, to some extent, at 
repairing the subsequent drawbacks. 

As it is known the same data set can be reduced 
following different approaches, like the direct 
method (Bruinsma et al., 2004; Ditmar et al., 2003) 
or the time-wise method (Pail and Plank, 2002; 
Schuh, 2000), which however are not in the focus of 
the present paper.  

The space-wise approach (see Figure 1), as 
understood today, comprises three main steps, i.e. 
• a time-wise Wiener filtering (Papoulis, 1984) of 

data along the satellite orbit; 
• a local prediction of grids of suitable functionals 

of the anomalous potential (e.g. T, Trr, TNN – TEE, 
where TNN, TEE are second derivatives in the 
northern and eastern directions); 

• a harmonic analysis to estimate spherical 
harmonic coefficients by numerical integration 
(Migliaccio and Sansò, 1989) or by fast spherical 
collocation (Sansò and Tscherning, 2003). 

The procedure has to be iterated both because when 
Wiener filtering is applied to raw data, information 
is  lost  in  the  low  frequency  band  (where  noise  is 



 
 
Fig. 1 Scheme of the space-wise approach to GOCE data analysis 

prevailing), and in order to correct directional 
derivatives, due to the instrumental frame 
wandering; iterations provide the lost information. 
The procedure is known to be convergent,  
by numerical tests (Migliaccio et al., 2004a; 
Migliaccio et al., 2004b). 

However, in a first phase of the mission study, 
when the rotations of the gradiometer were 
considered as controlled to the level of some  
arc-minutes, the grid of estimation errors after the 
first iteration was fairly homogeneous, showing at 
most some trackiness related to the strong 
correlation of the noise (see Figure 2). 

On the contrary, when a stronger attitude 
dynamics has to be accepted in the GOCE design, 
the same procedure yields grids where a clear 
signature of geophysical features (e.g. the Andes, 
the Himalaya, etc.) was visible and persistent 
through the iterations (see Figure 3 and Figure 4). 

 
Fig. 2 Estimation error after the first iteration working with 
second radial derivatives Trr  

 

Legend 
 
SST = Satellite to 
Satellite Tracking 
 

SGG = Satellite 
Gravity-Gradiometry 
 

FFT = Fast Fourier 
Transform 
 

LORF = Local Orbital 
Reference Frame 
 

GRF = Gradiometer 
Reference Frame 

Fig. 3 Estimation error after the first iteration working with 
second derivatives Tzz along the instrumental z-axis. The 
critical areas are encircled  
 
 

 
Fig. 4 Estimation error after the last iteration working with 
second derivatives Tzz along the instrumental z-axis 



 
This of course would call for a regional gridding 

procedure using regionally adapted covariance 
functions (Arabelos and Tscherning, 2003) or for a 
multiscale spherical analysis (Freeden, 1999) which 
still remains an interesting alternative for the future; 
however dealing with present choices, it seemed to 
the authors that a kind of “homemade” multiscale 
analysis could be performed by: 
• cutting the highest signal values (e.g. above the 

2σ level, with σ computed on all the data); 
• making a specific spherical harmonic expansion 

of a smoothed version of the “peak only” grid; 
• recomputing a new data set where the effect of 

the peaks are removed; 
• applying the space-wise approach to the 

regularized data set; 
• adding back to the estimated spherical harmonic 

coefficients, those used to eliminate the peaks. 
We hoped that such a remove-restore procedure, by 
providing a more homogeneous and smooth data set 
to the system, would in the end produce a more 
accurate estimate of T. 
 
2  The experiment and its results 
 
In order to test the performance of the iterative 
space-wise approach when the previously described 
regularization procedure is applied, a simulation has 
been performed in a typical GOCE framework. 

The EGM96 model {Tnm}, from degree 25 to 
300, is used to simulate the potential values T and 
the second derivatives Tzz, along the instrumental 
 z-axis oscillating according to the following  
long-period sinusoidal laws: 
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where θ y is the rotation around the y-axis (pitch) 
and θ r around the radial direction (roll). 

The observations are simulated every second 
along a circular orbit, at an altitude of 250 km and 
with an inclination of 96.5°, for a total number of 
data N = 223 ≅ 8⋅106, corresponding to a mission 
length of about 100 days. 

A coloured noise, specified by the spectrum in 
Figure 5, is added to the Tzz observations, while a 
white noise with a standard deviation of 0.3m2/s2, 
corresponding to an orbital error of about 3 cm, is 
added to the potential T values (see Figure 6). 

 
 

Fig. 5 Signal (in grey) and noise (in black) power spectral 
density of the second derivatives Tzz   
 

 
 

Fig. 6 Signal (in grey) and noise (in black) power spectral 
density of the potential T 

 
A multiple-input multiple-output (MIMO) Wiener 

filter is designed by using the empirical spectra of 
Trr and T as well as the empirical cross-spectrum 
between Trr and T, all computed from the EGM96 
model. 

After filtering, the data are locally interpolated on 
a spherical grid at satellite altitude, with a cell size 
of 0.72°×0.72°; in fact this allows for an almost 
exact integer partitioning of the latitude interval 
covered by the observations, excluding the polar 
gaps. The local gridding is implemented by 
collocation, cell by cell, on a moving window of 
double size with respect to the grid cell. 

At this point, we set up the homogenization 
procedure, selecting the Trr gridded data which are 
outside the global 2σ value (in our simulation σ is 
equal to 143.7 mE). Note that the thresholding is  
only based on the Trr values and not on the potential 
T, which is much smoother and thus more 
homogeneous. 

 



 
Figure 7 shows the Trr grid as obtained by the 

local gridding procedure, while Figure 8 represents 
the “peak only” grid, referred back to the zero level; 
in other words, we have considered a field only in 
the peak areas, with values (Trr – 2σ) where Trr > 2σ 
and (Trr + 2σ) where Trr <  –2σ. 

After a moving-average smoothing to avoid 
Gibbs effects, we get a spherical harmonic global 
model {δTnm} (by numerical integration), which 
reasonably describes the “peak only” grid. 

This model has to be subtracted from the original 
one, in order to obtain a more homogeneous  
data set, i.e. 
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Fig. 7 Trr estimated grid after the first step of the iterative 
space-wise approach 
 

 
Fig. 8 Grid of the highest Trr values, above the 2σ threshold; 
the values are referred back to the zero level  
 
 

Note that the signal degree variances of the  
new model, and hence the corresponding global 
covariance functions, remain practically the same, 
as shown in Figure 9. 

Starting from the new regularized data, we first 
apply the space-wise approach and then, at the end 
of the iterative procedure, add back the “peak only” 
model. 

 
Fig. 9 Degree variances of the EGM96 model (in grey) and of 
the new one (in black) after regularization 
 

Let us come to the results of this technique, 
comparing the cases with and without statistical 
homogenization. 

The error degree variances of the new solution, 
shown in Figure 10, are globally systematically 
better. The GOCE requirement of solving the 
gravity field up to degree 200 can be safely reached. 

The amount of the improvement in the harmonic 
coefficients estimation can be evaluated by the 
following relative differences 
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where nδσ ,  are the error degree standard 
deviations after the last step of the space-wise 
iterative procedure, without and with regularization 
respectively. This index is displayed in Figure 11, 
degree by degree, clearly showing a systematic 
improvement of the order of about 5%. Let us also 
note that, apart from one value, 

new
nδσ

nδσ > . new
nδσ

Nevertheless the real advantage of this technique 
can be better perceived locally. To this aim we 
concentrate on a critical area, e.g. in the Himalaya 
(78°<λ<92°, 60°<θ<68°), where the grid estimation 
errors are very high. 

 



 

 
Fig. 10 Error degree variances of the estimated model with 
regularization, after the first (in grey) and last (in black) 
iteration. The reference model is EGM96 
 

 
Fig. 11 Relative differences of the error degree standard 
deviations without and with regularization, after the last step 
of the iterative procedure 
 

The final errors, in terms of geoid undulation N, 
are shown in Figure 12 and Figure 13, without and 
with the statistical regularization, respectively. The 
same errors for the gravity anomalies ∆g are 
displayed in Figure 14 and Figure 15. These errors 
have been computed as differences with respect to 
the “true” EGM96 model, up to degree 200. It is 
clear that the new estimated model produces a 
much more homogeneous error distribution, 
reducing the “local peak” down to 30%. Some 
statistical indicators are reported in Table 1 and 
Table 2. The values are rather large considering the 
global goal of the GOCE mission of 1 cm in the 
geoid and 1-2 mgal in the gravity anomalies at 
about 1 degree wavelengths. However, note that we 
have simulated only 3 months of data and we have 
not used all the components provided by the GOCE 
gradiometer. Their additional use may improve the 
solution considerably (Tscherning, 2003). 

 
Table 1. Maximum and r.m.s. error of the geoid undulation, 
in the Himalaya region, without and with the regularization 
 

max error of N r.m.s. error of N 
without reg. with reg. without reg. with reg. 

1.071 m 0.722 m 0.336 m 0.229 m 
relative difference relative difference 

32.57% 31.80% 
 
 
Table 2. Maximum and r.m.s. error of the gravity anomalies, 
in the Himalaya region, without and with the regularization 
 

max error of ∆g r.m.s. error of ∆g 
without reg. with reg. without reg. with reg. 
23.28 mgal 16.53 mgal 7.74 mgal 5.52 mgal 

relative difference relative difference 
29.01% 28.75% 

 
 

 
Fig. 12 Estimation errors of the geoid undulation N in the 
Himalaya region without applying the regularization 
 

 
Fig. 13 Estimation errors of the geoid undulation N in the 
Himalaya region after applying the regularization  

 



 

 
Fig. 14 Estimation errors of the gravity anomalies ∆g in the 
Himalaya region without applying the regularization 
 

 
Fig. 15 Estimation errors of the gravity anomalies ∆g in the 
Himalaya region after applying the regularization 

 
3  Conclusions 
 
Although the use of this remove-restore approach to 
smooth the high level inhomogeneities before 
applying collocation has not a very large impact on 
the accuracy of harmonic coefficients estimation, 
we think that: 
• the improvement is systematic and therefore 

worthwhile; 
• the local effect of this correction in critical areas 

is very significant, thus justifying the effort of 
its implementation. 

The reason why such a strong signature of the 
errors was not visible in previous simulations of the 
space-wise approach, stems in our opinion from  
the fact that, by introducing strong rotational 
dynamics of the satellite, we make the hypothesis 
of stationarity, on which the Wiener filtering is 
based, much less realistic (Albertella et al., 2004).  

As a result the areas of strongest signal introduce an 
error with a signature directly proportional to the 
signal strength. Would this hypothesis be confirmed, 
one should also think of applying a similar 
procedure to the time-wise approach. 
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