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 Abstract 

The purpose of this work is to propose a reliable method to detect outliers, 
continuing the work done in a previous article. The previous work was affected 
by a serious defect related to a rather unstable local estimate of a dispersion 
index. This paper relies on a robust estimation of a relevant parameter that, 
before being used for testing the data, is processed with a low-pass filter. The 
many advantages, obtained in this way, are highlighted in an experiment on a 
real D.T.M. dataset. 

 
Introduction 
The adopted method for outlier rejection in a gridded points data set is the following 
one: to validate the value u(tk), a window [whose dimension is (2s+1)δx x (2s+1)δy] is 
opened around the position tk; the observation points tj falling in the window [whose 
number is Ns = (2s+1)2 – 1 = 4s (s+1)] are considered in order to estimate the 
coefficients of an interpolating model. With the interpolating model (which, we 
underline, is tuned only on the surrounding points), an estimated value of u(tk) is 
compared with the observed u(tk) itself, leading to test the hypothesis (with significance 
level α) 

H0: E[ û (tk) – u(tk)] = 0  . 
 
If the local model is a constant function, there is only one coefficient to estimate: û (tk) 
itself. In the past we proposed fitting polinomials with coefficients estimated by a 
Minimum Least Square criterion. As it is known (see [18]), we found that these 
methods have many disadvantages; in particular they are unreliable when there are more 
outliers in the window and in certain cases they are too much sensitive. 
The enhanced method we propose now is robust against outliers, because we use 

û (tk) = 
kj

Median
≠

 {u(tj)}  ; 

therefore tk is considered an outlier if 
|Zemp(tk)| > Zα/2   , 

where 
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while Zα/2 is the abscissa value of the standard gaussian distribution, corresponding to a 
right tail of area α/2.1 
 
The estimated σ of [ û (tk) – u(tk)] is typical of robust estimation literature (cfr. [8], [6] 
and [17]). In our conservative approach the normal (gaussian) approximation is used, 
but – as discussed in [18] – this does not represent a problem. 
 
It should be noted that Zemp(tk), depends on the size of the moving window. Therefore 
an algorhytm to find an acceptable dimension for the windows has been developed, too. 
The size of the window depends essentialy on s, since δx and δy are led by the kind of 
acquisition process and the type of the cartographic projection of the area to which the 
points belong. 
A good choice of s can be made by analyzing the quality of the interpolation model on a 
global scale. We performed this analysis with the index “global MAE”: 

gMAE(s) = ∑ −
k

kk tutu
N

)(ˆ)(1   . 

Its behaviour (that depends on s since û (tk) comes from the median of values that are 
enclosed in the moving window) is this: starting from s=1, gMAE decreases until, for a 
value s=s*, it attains the minimum value gMAEmin; for s>s*, gMAE increases 
indefinitely with s. Therefore this optimal value s* can also be used for the computation 
of every local MAEk. 
Though we are not able to justify this result, we found experimentally that, when data 
are regularly gridded, then s*=1 has always been the optimal value (gMAE is 
minimized for a window of size 3x3).  
 
Inadequacy of the simple local MAE calculated as above 
When the points tj, around tk , are well fitted by their median (better than the mean index 
for not being “outlier-prone”  - see also [1], [2] and [3]), then a small difference 
between u(tk) and its estimation leads to consider tk an outlier. 
For instance, consider 8 points in a grid with exactly the same height and a central point 
with 5 cm height difference; of course, since the MAE in this case is exactly zero, this 
point will be flagged as an outlier. We notice already that this can happen exactly 
because here and there 8 points can really bear similar values; when we increase the 
number of surrounding points, this effect could become milder. 
In any way the formula for outlier rejection needs a revision, in order to label as outliers 
only points whose values are sensibly different from their estimations.  
Looking back at 
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we find that, to decrease Zemp(tk), under equal conditions, the value of local MAEk 
should be increased, avoiding critical situations like that described above. This 
                                                           
1 A partial demonstration of the above formulae is the asymptotic behaviour of Zemp: when N ∞, Mean 
Absolute Error (MAE) is close to Standard Deviation (σ) and Median (MD) is close to Mean (µ). So, 

having defined y=u(tk)-MD, we discover that y=N[0,σ2], µ[|y|]= (2/π)1/2 σ and therefore Z
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operation must be accomplished with caution, since the rule that is going to be 
introduced has to be valid under fairly general conditions, not case by case. 
We decided that a suitable way to “modulate” the local MAEk is to smooth it, as if it 
were a signal. From the general theory of signals, when a signal is smoothed its 
minimum increases, its maximum decreases, its mean is preserved and the variance 
decreseases. Moreover, these behaviours are stressed as far as the size of the moving 
average window increases. 
 
The smoothing strategy 
A simple way to smooth our “MAE signal” is using a traditional bi-dimensional moving 
average on a window of size (2s+1)x(2s+1). It is known that when a matrix M (nr)x(nc) 
is convolved with a kernel K (2s+1)x(2s+1), the result is a matrix R (nr+2s)x(nc+2s) 
because M is padded with a frame of zeros for s times. But the significant values of the 
operation are in the submatrix S (nr-s)x(nc-s) of M, since only the most internal values 
are calculated with all the elements covered by K. Naturally the choice of the dimension 
s in this case is very important. 
In the next paragraph we show some experiments with real data from a D.T.M. that 
have given us some hints on this choice. 
On the other hand at least two two things are clear: altough an optimal window to 
estimate the central value is often of dimension 3x3, yet the corresponding MAE 
(computed on that window only) has a by far too large probability of having a too small 
value, thus generating false outliers. On the other side, if we used the average of the 
local MAEs over the whole data area that would be too large to detect real outliers. So 
we decided to base our choice on experiments. 
 
The experiment 
In order to test the quality of the method of outlier rejection and to calibrate the one on 
which local MAEs have to be averaged, we chose an area (in the northern part of Italy) 
where we have a Digital Terrain Model characterized by a flat zone and a mountainous 
one. There is also a lake (Lake of Como) whose form is a “Y” upside down. The 
description of the region is the following (in degrees with their decimals): 
north:      46.1326129 
south:      45.491 
east:       9.2928936 
west:       9.043 
e-w resol:  0.00277659556 
n-s resol:  0.00194428152 
therefore the matrix M is composed by 330 rows and 90 columns, as shown in figure 1. 



 
Figure 1 – The area of study 

An outlier rejection performed with our method on the above dataset (with significance 
level of α=0.1%) and using local MAE indexes without any smoothing, leads to 
identifying 40 outliers. 
It should be noted that, in order to avoid border effects, a frame of width 9 all around 
the boundary has been dropped in every case because the largest kernel is 19x19 (so 
s=9) and we wanted to have results capable of overlapping. 
So instead of validating 330x90=29700 points, we effectively validated 312x72=22464 
points. 
 
By smoothing the local MAE with a simple kernel 3x3, the number of outliers found is 
1; this shows that smoothing in a so restricted area provoked an increasing of the local 
MAE (in every point) and therefore to consider good points the ones previously labelled 
as outliers. Using wider and wider kernels, the number of found outliers goes around 50 
(as can be seen in the table 1). This can lead to think that this is the reasonable number 
of outliers. 
 

MAE 
smoothing’s 

Window 

# 
Outliers

Min 
MAE

Max 
MAE

Mean 
MAE 

Var 
MAE 

None 40 0 210,88 32,69 1306,8 
3x3 1 0 162,06 32,69 1167,7 
7x7 30 0 117,12 32,69 1023,4 

11x11 46 0,535 101,665 32,68 945,9 
15x15 48 0,551 94,96 32,64 900,1 

Table 1 – Interesting indicators with different smoothing windows 

Another way of perceive the process is by plotting an histogram of the entire MAE 
dataset in the different cases. 
In figure 2 it can be seen that – smoothing with a wider and wider mask – the number of 
very small MAEs decreases while the number of MAE around the mean increases. 
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Figure 2 – Histogram of MAE dataset in different cases 
 
 

 
Figure 3 – Relevant points according to two approaches 

 



As it can be seen from Figure 3 (where outliers according to original MAE are plotted 
with red asterisks, outliers according to mask 9x9 with smoothed MAE are plotted with 
yellow, and the 7 outliers in common with blue boxes), by smoothing the MAE, we are 
able to find “true” outliers (for example very interesting the row of 11 outliers in the 
south west, which gives the impression of some systematic error) and ignore many 
“false” ones, for example those that are in the flat zone. 
 
The smoothing process of the local MAEs produces a positive effect that comes from 
the combination of two effects: the increasing of the minimum MAE (that leads to 
consider good points the ones that with calculated MAE were considered outlier, 
because of their small deviation from the estimation) and the decreasing of the 
maximum MAE (that leads to consider outlier points some that previously were 
considered good ones). The resulting effect is that a reasonable number of outliers is 
detected by a reliable process. This insight is confirmed by figure 4 (and figure 5, that is 
a zoom of figure 4), where – in a diagram local MAE vs absolute differences – with red 
circles (o) are shown outliers according to original MAE, while with blue crosses (x) are 
shown outliers according to smoothed MAE with mask 9x9. 
Indeed, circles with very low MAEs and very low absolute differences2 are ignored by 
smoothing the MAE; also circles with very high local MAE and very high absolute 
differences are not considered outlier, according to the enhanced process. The 7 outliers 
in common are perceivable because each of the 7 circles has its own cross on the same 
value of absolute difference. 
It can also be noted that, in a gridded dataset, it is always Ns=8. So, having fixed 
α=0.1%, is easy to calculate the gradient of the dotted line that defines the limit over 
which we find outliers: since the theoretic value of Z is 2.5758, 
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In conclusion, the simple idea of smoothing the MAE is a powerful tool to detect 
outliers as described above. The smoothing window can be fixed to dimension 9x9 
altough close by values would not dramatically affect the result. There is still work left 
to conceive a more general method suitable for not gridded datasets. 
 

                                                           
2 With the term “absolute difference” we mean the absolute value resulting from the difference between 
the value of the observed point and its estimation (the median of the surrounding points). 
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Figure 4 – Relevant points according to two approaches 
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Figure 5 – Particular of figure 4 
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