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Abstract

Different procedures for considering the effects of topographic masses in Stokes-
Helmert scheme of geoid determination are reviewed. Classical integral formulae use a
planar approximation of the geoid and a limited area of integration, and thus account
only for the local contributions of topographic effects. In the other hand, the spherical
harmonic representation of the topographic effects normally only includes the long-
wavelength information. Another description of the effects of topographic masses
given by Martinec and Vańıc̆ek (1994a, b) uses near and far-zone integration areas
and a spherical approximation of the geoid. Finally, two formulae, that combine short
and long-wavelength contributions, are presented for topographical effects. These re-
cent formulae imply that the integral formulae for determining the topographic effects
may have some numerical problems in representing global information (for truncated
integration domain). On the other hand, a representation of the effects by a set of
spherical harmonic coefficients of the topography to, say, degree and order 360 leads to
omission of significant short-wavelength information. All above-mentioned procedures
were used for computation and comparisons in a test area in Iran with the maximum
elevation of 3053 m. The results of these comparisons show that the Martinec and
Vańıc̆ek (1994a, b) integral formulae and the recent combined formulae presented by
Sjöberg and Nahavandchi (1999) and Nahavandchi (2000) are in good agreement with
each other. These formulae use a spherical approximation of the geoid, contrary to
the classical formulae which use a planar approximation. Only the combined formulae
include, however, all wavelength constituents and are recommended for precise geoid
determination. Further, the gravimetric geoidal heights were computed applying these
different procedures of handling the topographic effects. The results were then com-
pared at Global Positioning System (GPS)-leveling stations in Iran. The standard
deviation of the fit with the combined formulae is the best among the other methods
and is equal to ±10.1 cm.
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1 Introduction

The geoid is frequently determined from ground gravity data by the well-known Stokes
formula. This integral formula is the solution of an exterior type boundary value problem,
which implies that masses exterior to the geoid are not permitted in the formulation of
this problem. This is achieved mathematically by removing the effect of external masses
and replace them by the effect of additional masses below the geoid [direct topographic
effect (DTE) on gravity]. However, it should be noted that the DTE on gravity anomaly
equals the sum of the DTE on gravity and the so-called indirect effect of the topography
on gravity or the secondary indirect topographic effect (SITE) on the geoidal height.
Thereafter, as Helmert’s reduction is used, the corrected ground gravity anomaly (Helmert
anomaly) must be continued downward to the geoid (downward continuation) prior to
perform Stokes’s integration. The effect of removed masses is then restored after applying
Stokes’s integral [primary indirect topographic effect (PITE ) on the geoidal height]. These
procedure follows the principals described in Vańıc̆ek and Martinec (1994), Martinec (1998)
or Nahavandchi and Sjöberg (1998).

Recognizing that a valid solution to geoid determination would occur only if there
were no masses outside the geoid, Helmert suggested that the masses outside the geoid
could be condensed as a surface layer directly at the the reference sphere in a spherical
approximation of the geoid. In this study, Helmert’s second condensation method is used
that preserves the Earth mass, for which the Helmert model of the Earth has the same
mass as the real Earth. A discussion of some attributes of Helmert’s second method of
condensation may be found in Heiskanen and Moritz (1967), Wichiencharoen (1982), Heck
(1992), Martinec et al. (1993), Vańıc̆ek et al. (1995) and Nahavandchi and Sjöberg (1998).

Two different formulae for the remove-restore problem were presented by Moritz (1980)
and Vańıc̆ek and Kleusberg (1987). Moritz (1968, 1980) examined the role of the topogra-
phy to show a relationship between Helmert’s condensation reduction and the approximate
solution of the Molodenskij boundary value problem. He derived the DTE referred to the
geoid. Vańıc̆ek and Kleusberg (1987) derived the DTE referred to Earth’s surface, which
means that the ground gravity anomalies corrected with their formula still need a down-
ward continuation correction to be used in Stokes’s integral. These two classical formulae
are limited to the second power of elevation H and suffer from the planar approximation
of the geoid.

Sjöberg (1994) suggested a spherical harmonic representation of the topographic ef-
fects. This approach was implemented by Sjöberg (1995, 1996) to the second power of
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elevation H and by Nahavandchi and Sjöberg (1998) to the third power of elevation H ,
where the DTE was derived at the surface of the Earth, respectively.

Another description of the Stokes-Helmert method for geoid determination was given
by Vańıc̆ek and Martinec (1994). The specific problem of determining the DTE and the
PITE were treated by Martinec and Vańıc̆ek (1994a, b), who pointed out that the classical
formulae may severely be biased because of the planar approximation of the geoid in the
derivations.

Later, Nahavandchi (1998a, b), Sjöberg and Nahavandchi (1999), Sjöberg (2000) and
Nahavandchi (2000) argued that the DTE and the PITE were composed of both short
(local effects) and long-wavelength (global effects) contributions. This implies that the
integral formulae for determining the topographic effects (using a limited spherical cap
around computation points) may have some problems in representing the long-wavelength
contributions. On the other hand, a representation by the set of spherical harmonic
coefficients of the topography omits significant short-wavelength information, as in the
practice it is limited to a maximum degree of 360 in this study. They derived two formulae
for handling the DTE and the PITE with a combination of the integral formulae and the
set of spherical harmonic coefficients of Earth’s topography.

In this paper, all above-mentioned formulae for topographic effects will be computed
in the test area with maximum elevation of 3053 m. The differences will be compared and
discussed. Finally, the results of gravimetric geoid heights computed with different topo-
graphic effects will be compared to the geoidal heights derived at GPS-leveling stations.

2 Topographic effects in gravimetric geoid determination

The formulae used for topographic effects here are based on a constant topographic density.
These formulae can also be generalized to a laterally variable density simply by putting
it inside the surface integrals of the DTE and the PITE (see also Martinec 1998) . In
addition to topographic effects, geoid determination by Stokes’s formula also requires that
the gravity anomalies, ∆g, must refer to the geoid. For satisfying this condition, the
gravity anomalies available on Earth’s surface have to be reduced to the geoid. This
reduction is called a downward continuation.

The Stokes integration with the Helmert anomaly and considering the PITE on geoid
is realized by the formula (Heiskanen and Moritz 1967, p. 324)

N =
R

4πγ

∫∫

σ
S(ψ)∆gH∗

dσ + δN∗
I (1)

where N is the geoid height, ∆gH
∗

is the ground free-air gravity anomaly (∆g) corrected
for the DTE (resulting in Helmert’s anomaly ∆gH at the Earth’s surface) and then reduced
to the geoid (i.e., downward-continued to the geoid), γ is normal gravity, S(ψ) is Stokes’s
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function, ψ is the spherical distance between the computation and running points, σ is
the unit sphere, R is the mean radius of the Earth, and δN∗

I is the PITE on the geoid.
In this study, the Helmert second condensation method was used to remove the effect of
external masses and replace them by the effect of additional masses below the geoid. The
Helmert anomaly ∆gH at Earth’s surface can therefore be expressed via

∆gH = ∆g + δ∆gdir (2)

where ∆g is the ground free-air gravity anomaly and δ∆gdir is the DTE on gravity anomaly
determined at Earth’s surface. In this section, different formulae for correcting the ef-
fects of topographic masses in gravimetric geoid computations within the Stokes-Helmert
scheme are presented, and the downward continuation problem will be discussed in Sect.
3.

The SITE on the geoidal height is usually two orders of magnitude smaller than the
DTE. Nahavandchi (1998b) computed this effect at 23 GPS-leveling stations in Sweden
with the mean value of less than 0.7 cm. This term is neglected in this study. Also,
the geoid atmospheric effect (Sjöberg and Nahavandchi 2000) and other corrections to
Helmert’s anomalies on the Earth’s surface (see e.g. Vańıc̆ek et al. 1999), are not studied
here.

2.1 DTE to gravity anomaly

2.1.1 DTE with the classical integral formulae

Moritz (1980) derived a formula for the removing of the effect of topographic masses. This
correction should be added to the ground free-air gravity anomalies in Stokes’s formula.
This formula which uses the planar approximation of the geoid, is expressed as (Moritz
1980)

δ∆gM∗
dir (HP ) =

µR2

2

∫ ∫

σ

(H −HP )2

`30
dσ (3)

where µ=Gρ, G is the universal gravitational constant, ρ is the constant density of to-
pography, H and HP are the orthometric heights of the running and computation points,
respectively, and the spatial distance `0 = R

√
2(1− cosψ) = 2R sin ψ

2 .
The topographic effect δ∆gM∗

dir is related to the points on the geoid. This formula assumes
that the gravity anomalies in a downward continuation integral are linearly proportional
to the topographical heights according to the so-called Pellinen assumption (Moritz 1968,
1980). Hence, the resulting Moritz topographic effect also involves the effect of the down-
ward continuation of gravity anomalies. This effect is, however, described only approxi-
mately since the linear relationship between gravity anomalies and topographical heights
coresponds to the reality only roughly (see e.g. Heiskanen and Moritz 1967).
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Vańıc̆ek and Kleusberg (1987) approximated the geoid by a horizontal plane and the
constant topographic density ρ was also used in their derivations. Their formula for DTE
determination at the point P , at Earth’s surface, can be approximated as follows (Vańıc̆ek
and Kleusberg 1987)

δ∆gVK
dir (HP ) =

µR2

2

∫ ∫

σ

H2 −H2
P

`30
dσ (4)

In a strict sense, Eqs. (3) and (4) can only be used for the far-zone integration area,
where `0 � H , and the effect of the near zone and the Bouguer shell (which cannot
be derived in the planar model) are completely missing (Martinec and Vańıc̆ek 1994a;
Nahavandchi 2000). It should be mentioned that the power series of height H used in
the integration is limited to the second order. In addition, Eqs. (3) and (4) also suffer
from other approximations. The most important one is that the slope of the topography
must be within 45◦. This limitation was pointed out by, e.g., Heck (1992), Martinec and
Vańıc̆ek (1994a) and Sjöberg and Nahavandchi (1999).

The DTE used by Moritz (1980), and Vańıc̆ek and Kleusberg (1987) may significantly
be different. One notes that Eq. (3) is always a positive quantity while Eq. (4) may be both
positive and negative. Wang and Rapp (1990) and Nahavandchi (1998a) compared these
two methods. They obtained large differences in the DTE on gravity and geoid. These
differences are larger with complexity of the topography. They proposed that Vańıc̆ek
and Kleusberg’s free-air gravity anomaly should not be used in the Stokes formula. The
difference was also explained by Martinec et al. (1993) as being due to the fact that while
Vańıc̆ek and Kleusberg’s results refer to the Earth surface, Moritz’s results refer to the
geoid.

2.1.2 DTE represented by the spherical harmonic expansion

Sjöberg (1994, 1995) developed the DTE in spherical harmonics to power H2, and Naha-
vandchi and Sjöberg (1998) extended this approach to power H3. The DTE on gravity
with the spherical harmonic representation is (Nahavandchi and Sjöberg 1998)

δ∆gNS
dir(HP ) .=

πµ

2R

[
5H2

P + 3H2
p + 2

M ′∑

n,m

n(H2)nmYnm(P )
]

+
πµ

2R2

[
28
3
H3
P +

9
2
H2
PHP − 1

2
H3
P

+ HP

M ′∑

n,m

n(2n + 9)(H2)nmYnm(P )

− 1
3

M ′∑

n,m

n(2n+ 7)(H3)nmYnm(P )
]

(5)
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where Ynm are fully normalized spherical harmonics obeying the following rule

1
4π

∫∫

σ
YnmYn′m′dσ =

{
1 if n = n′ and m = m′

0 otherwise
(6)

and

(Hv)nm =
1
4π

∫∫

σ
Hv
PYnmdσ ; v = 2, 3, (7)

Hv
P =

M ′∑

n,m

(Hv)nmYnm(P ), (8)

Hv
P =

M ′∑

n,m

1
2n + 1

(Hv)nmYnm(P ). (9)

In Eq. (5), M ′ is the maximum degree and order of height coefficients in a spherical
harmonic expansion. Rewriting the formula in Eq. (5) for the point P at Earth’s surface
to the second power of elevation H , one obtains (Nahavandchi 2000)

δ∆gNS
dir(HP ) .=

−2πµ
R

M ′∑

n,m

(
R

r

)n+1 (n+ 2)(n+ 1)
2n+ 1

(H2)nmYnm(P ). (10)

These spherical harmonic representations [Eqs. (5) or (10)] of the DTE are simple for
practical computations. They are also free from the problems encountered in the inte-
gral formulae, such as the singularity at the computation point. However, the harmonic
expansion series of H2 (and H3) will only include the long-wavelength constitutents for
M ′ =360. To incorporate all significant contributions of both short and long-wavelength
constitutents, an expansion in spherical harmonics of H2 (and H3) to very high degrees
should be required, which is practically difficult and ruins the simplicity of this method.
Nahavandchi and Sjöberg (1998) showed that the dominant part of the power series in Eq.
(5) is the second power of elevation H . For example, the contribution from the harmonic
expansion series H3 on the geoid is within 9 cm in the Himalayas. Later, Nahavandchi
(1999) showed that the contribution from the harmonic expansion series H4 and H5 can
safely be neglected for M ′=360 (also see Sun and Sjöberg 2001).

2.1.3 DTE presented by the integral formula of Martinec and Vańıc̆ek (1994a)

The specific problem on determining the DTE was also treated by Martinec and Vańıc̆ek
(1994a), who pointed out that the classical formulae may severely be biased because of the
planar model of the geoid used in their derivations. To solve this problem, the spherical
approximation of the geoid was used, but the effect was still considered only locally as a
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result of a limited integration area. Martinec and Vańıc̆ek (1994a) divided the integration
area(full spatial angle) (σ) into a near zone (σ1) and a far zone (σ2) resulting in:

δ∆gMV
dir (HP ) = −4πµ

R
H2
p +

µR2

2

∫∫

σ1

H2
P −H2

`3

(
1 − 3H2

P

`2

)
dσ

+
µR2

2

∫∫

σ2

H2
P −H2

`3

(
1 − 3 sin2 ψ

2

)
dσ (11)

where the spatial distance ` =
√
r2 + R2 − 2rR cosψ).

The above formula produces a relative error of 3×10−3 for the spherical approximation
of the geoid, which in turn causes an error in geoidal heights of 6 mm at most. Also, a
planar approximation of distances (not to be confused with the planar approximation
of the geoid) is used in this formula which produces another error which is of the same
order of magnitude as the error of the spherical approximation of the geoid. This error
is acceptable for the precise determination of the regional geoid. Note that in Eq. (11) `
is used instead of `0 that is used in the classical integral formulae (3) and (4). Contrary
to Eqs. (3) and (4), the near-zone effect and the Bouguer shell are also included in this
formula. It is obvious that both of these effects are significant and must be considered in
precise geoid determination.

2.1.4 DTE with combination of an integral formula and the spherical har-
monic expansion

The spherical harmonic representations of the DTE [Eqs. (5) or (10)] are simple for
practical computations. However, the harmonic expansion series of H2 (and H3) will
include only the long-wavelength constitutents for M ′=360. On the other hand, integral
formulae are computed locally and include the short and in the most cases also the medium-
wavelength constitutents (depending on the cap size).

A combination of local contributions and long-wavelength information was firstly pro-
posed by Nahavandchi (1998a). Later, Nahavandchi (1998b), Sjöberg (2000) and Naha-
vandchi (2000) derived the direct gravitational effect of the topography at a topographic
surface point P to the second power of H with a combination of the integral formula and
the spherical harmonic expansion as (Nahavandchi 2000)

δ∆gnew
dir (HP ) = −4πµ

R
H2
p −

3µ
8

∫∫

σ

H2 −H2
P

`0
dσ

+
µR2

2

∫∫

σ

H2
P −H2

`3

(
1− 3H2

P

`2

)
dσ (12)

or

δ∆gnew
dir (HP ) = −5πµ

2R
H2
p −

3πµ
2R

H2
P +

µR2

2

∫∫

σ

H2
P −H2

`3

(
1 − 3H2

P

`2

)
dσ (13)
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Equation (13) uses the spherical model of the geoid and contrary to Eq. (11) can
include long-wavelength constituents (if Eq. (11) uses a limited integration area). The
effect of the Bouguer shell is also included. It is also free from the singularity problems
and topography limitations (Sect. 2.1.1) in classical integral formulae as it uses ` instead
of `0. The same relative errors as in Eq. (11) are produced in Eq. (13).

2.2 Primary indirect topographic effect

2.2.1 PITE with the classical integral formula

The classical formula for determining the PITE on the geoid for Helmert’s second conden-
sation method with mass preservation is (Wichiencharoen 1982)

δN classic∗
I (P ′) =

−πµH2
P ′

γ
− µR2

6γ

∫∫

σ

H3 −H3
P ′

`30
dσ (14)

with the same notations as before. This formula uses the planar approximation of the geoid
and assumes the constant topographic density. Martinec and Vańıc̆ek (1994b) and Sjöberg
and Nahavandchi (1999) showed that the PITE determined on the basis of the planar
approximation of the geoid differs significantly from that resulting from the spherical
model of the geoid. They obtained differences up to a 0.5 m.

2.2.2 PITE represented by the spherical harmonic expansion

The spherical harmonic representation of the PITE can be shown to the third power of
topographic height in the point P ′ on the geoid as (Nahavandchi and Sjöberg 1998)

δNNS∗
I (P ′) = −2πµ

γ

∞∑

n=0

n − 1
2n+ 1

H2
n(P

′) +
2πµ
3Rγ

∞∑

n=0

n(n− 1)
2n+ 1

H3
n(P

′) (15)

where

Hν
n(P ′) =

2n+ 1
4π

∫∫

σ
HνPn(cosψ)dσ; ν = 2, 3 (16)

where Pn(cosψ) is the Legendre polynomial. Again, this formula is very simple for prac-
tical computations but with the global height information available in this study, it rep-
resents only the long-wavelength constitutents.

2.2.3 PITE represented by the integral formula of Martinec and Vańıc̆ek

(1994b)

The PITE derived by Martinec and Vańıc̆ek (1994b) is based on the spherical approxima-
tion of the geoid. However, they considered this effect only locally as a result of a limited
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integration area (spherical cap). The PITE in the point P ′ on the geoid is (Martinec and
Vańıc̆ek 1994b)

δNMV∗
I (P ′) = −2πµ

γ
H2
P ′ +

µR2

γ

∫∫

σ

[
2
(`20 +H2)0.5 − (`20 +H2

P ′)0.5

R

+ ln
`0
2R +H + (`20 +H2)0.5
`0
2R +HP ′ + (`20 +H2

P ′)0.5
− H −HP ′

`0

]
dσ (17)

The spherical approximation of the geoid in this formula produces again an relative error
of 3×10−3 in the geoidal heights. On the other hand, a planar approximation of distances
is used in this formula which produces an error of the same order of magnitude as the
error due to the spherical approximation of the geoid.

2.2.4 PITE with combination of the integral formula and the spherical har-

monic expansion

The classical formula [Eq. (14)] is not practical for numerical evaluations, as it requires
an integration over surface of the whole Earth to include long-wavelength contributions.
It also suffers from the planar approximation of the geoid (Martinec and Vańıc̆ek 1994b,
Sjöberg and Nahavandchi 1999). On the other hand, the spherical harmonic representation
of the PITE [Eq. (15)] needs a very high maximum degree of expansion, to consider
all short-wavelength information. A suitable compromise may therefore be of the form
(Sjöberg and Nahavandchi 1999)

∆δNI(P ′) = δN classic∗
I − δNnew∗

I = −3πµ
γ
H2
P ′ −

3Rµ
4γ

×
∫∫

σ

H2 −H2
P ′

`0
dσ − µ

8γ

∫∫

σ

H3 −H3
P ′

`0
dσ (18)

or

δNnew∗
I = δN classic∗

I − ∆δNI (19)

where ∆δNI in spectral form is approximated as

∆δNI(P ′) = −3πµ
γ
H2
P ′ +

πµ

2Rγ
(H3

P ′ −H3
P ′) (20)

Equation (19) includes the integral part for short-wavelength constituents and the spherical
harmonic representation to consider the long-wavelength information. It produces the
same relative errors as Eq. (17).

3 Numerical investigations

3.1 Data sources

A test area of size 2◦ × 2◦ in Iran is chosen. It is limited by latitudes 31◦ N and 33◦ N
and longitudes 54◦ E and 56◦ E. The topography in this area varies from 785 to 3053
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Figure 1: Presentation of topography in the test area. Contour interval =100 m

metres, shown in Fig. 1. The height spherical harmonic coefficients (H2)nm and (H3)nm
are determined from Eqs. (7) and (8) using global topography. For this, a 30′×30′ Digital
Terrain Model (DTM) is generated by averaging the Geophysical Exploration Technology
(GETECH) 5′ × 5′ DTM (GETECH 1995a), using area weighting. Since the interest
is in continental elevation coefficients and one aims to evaluate the effect of the masses
above the geoid, the heights below sea level are all set to zero. The spherical harmonic
coefficients are computed to degree and order 360. The parametr µ = Gρ is computed
using G = 6.673 × 10−11m3 kg−1 s−2 and ρ = 2670 kg/m3. The values of R=6371 km,
and γ = 9.81 m/s2. are also used in computations. In all the integral equations in
this study a 2′ × 2′ DTM produced in National Cartographic Center of Iran is used. It
should be mentioned that this DTM is not adequate for computing the local contributions
of topographic effects in practice and only give an insight in the medium-wavelength
constituents. A denser DTM is in preparation. Height data in all integral equations are
extended to 6◦ from the computation point.

3.2 Computations of the DTE with different formulae

The DTE is computed in the test area with the classical integral formulae of Moritz (1980)
[Eq. (3)] and Vańıc̆ek and Kleusberg (1987) [Eq. (4)], the spherical harmonic formula of
Nahavandchi and Sjöberg (1998) [Eq. (5)], the integral formula of Martinec and Vańıc̆ek
(1994a) [Eq. (11)], and Nahavandchi (2000) combined formula [Eq. (13)]. Table 1 shows
the statistics of the results of the computations with the above-mentioned formulae. To
give further insight into the differences, the results of the computations of the DTE are
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Table 1: Statistics of the direct topographic effect on gravity with different formulae in
the test region in mGal.

Min Max Mean SD

Classical Moritz formula 0.28 6.46 0.97 0.72
Classical Vańıc̆ek and Kleusberg formula -33.61 8.05 0.004 5.11

Spherical harmonic approach of Nahavandchi and Sjöberg -2.53 3.10 0.01 1.33
Integral formula of Martinec and Vańıc̆ek -45.23 8.03 -0.71 6.96

Combined formula of Nahavandchi -27.90 7.48 0.13 4.72

plotted. Figures 2-6 depict the DTE obtained with the different formulae mentioned above.
Results in Table 1 and Figs. 2-6 show that different procedures for computation of the
DTE result in significant differences.

It should be noted that Fig. 5 [integral formula of Martinec and Vańıc̆ek (1994a)] and
Fig. 6 (combined formula) are similar in shape with minor differences in magnitude. The
absolute maximum difference of 5.71 mGal was computed for these two procedures. Figure
3 [classical integral formula of Vańıc̆ek and Kleusberg (1987)] is similar in shape with Figs.
5 and 6 but with larger differences in magnitude. The absolute maximum difference of
18.82 mGal was computed for the differences between the combined formula [Nahavandchi
(2000)] and the classical integral formula of Vańıc̆ek and Kleusberg (1987).

Of course, there are several reasons for these differences. For example, the Moritz
(1980) formula is not really comparable to the other expressions in this study as it contains
a combination of two different effects. This formula for DTE, however, will be used in
the next step of computaions, which is geoid height determination with different methods
of handling the topographic corrections. The Vańıc̆ek and Kleusberg’s (1987) DTE refers
to the point on Earth’s surface while the Moritz (1980) formula refers to the point on
the geoid, which justify the large differences between these two formulae. The spherical
harmonic representation of the DTE will include only the long-wavelength information
in this study (for M ′=360), and most of short-wavelength information, which is included
in the other formulae, is missing. This is the main reason for large differences between
this method and the other ones. Martinec and Vańıc̆ek (1994a) integral formula and
Nahavandchi (2000) combined formula for the DTE are in good agreement with each
other. These two formulae use the spherical approximation of the geoid, contrary to the
classical formulae which use the planar model. There are some minor differences between
these two formulae, however, which originate from the exclusion of some parts of the
long-wavelength constituents in Martinec and Vańıc̆ek (1994a) integral formula, which are
included in the combined formula.
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Figure 2: The direct topographic correction computed by the classical integral formula of
Moritz (1980). Contour interval = 0.5 mGal

Figure 3: The direct topographic correction computed by the classical integral formula of
Vanicek and Kleusberg (1987). Contour interval = 2 mGal
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Figure 4: The direct topographic correction computed by the spherical harmonic approach
of Nahavandchi and Sjoberg (1998). Contour interval = 0.5 mGal

Figure 5: The direct topographic correction computed by the integral l formula of martinec
and Vanicek (1994a). Contour interval = 2 mGal

13



Figure 6: The direct topographic correction computed by the combined formula of Naha-
vandchi (2000). Contour interval = 2 mGal

Nahavandchi (2000) compared the combined formula [Eq. (13)] with the integral for-
mula of Martinec and Vańıc̆ek (1994a) in a test area in Sweden with the maximum elevation
of 1147 m. The maximum difference between these two formulae reached 2.31 µGal. In
that study, however, Martinec and Vańıc̆ek (1994a) formula was integrated up to 20◦ from
computation points using the GETECH 2.5′ × 2.5′ DTM (GETECH 1995b). Further out
the global 30′ × 30′ DTM (GETECH 1995a) was used. This justifies the belief that some
parts of the global information might be missing in the results from the integral formula
of Martinec and Vańıc̆ek (1994a)(depending to the cap size of integration area).

3.3 Computations of the PITE with different formulae

The PITE is computed in the test area with the classical integral formula [Eq. (14)], the
spherical harmonic formula of Nahavandchi and Sjöberg (1998) [Eq. (15)], the integral
formula of Martinec and Vańıc̆ek (1994b) [Eq. (17)], and Sjöberg and Nahavandchi (1999)
combined formula [Eq. (19)]. Table 2 shows the statistics of the results of the computations
with the above-mentioned formulae. Again, the results of the computations of the PITE
on the geoid height with the different formulae mentioned above are plotted. The results
are shown in Figs. 7-10. Table 2 and Figs. 7-10 present the differences between different
procedures for computation of the PITE. The same explanations as in case of the direct
topographic effect can be repeated here. Figure 9 [integral formula of Martinec and
Vańıc̆ek (1994b)] and Fig. 10 [combined formula of Sjöberg and Nahavandchi (1999)]
are similar in shape but with minor differences in magnitude. The absolute maximum
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Table 2: Statistics of the primary indirect topographic effect on the geoidal height with
different formulas in the test region in cm.

Min Max Mean SD

Classical integral formula -48.69 -3.68 -12.69 7.14
Spherical harmonic approach of Nahavandchi and Sjöberg -11.48 6.31 -0.04 4.35

Integral formula of Martinec and Vańıc̆ek -34.47 6.23 -0.83 6.29
Combined formula of Sjöberg and Nahavandchi -36.89 8.08 -0.91 7.11

Figure 7: The primary indirect topographic correction computed by the classical integral
formula . Contour interval = 3 cm
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Figure 8: The primary indirect topographic correction computed by the spherical harmonic
approach of Nahavandchi and Sjoberg (1998). Contour interval = 1 cm

Figure 9: The primary indirect topographic correction computed by the integral formula
of Martinec and Vanicek (1994b). Contour interval = 2 cm
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Figure 10: The primary indirect topographic correction computed by the combined for-
mula of Sjoberg and Nahavandchi (1999). Contour interval = 3 cm

difference of 4.94 cm is computed between these two methods. Figure 7 (classical integral
formula) is similar in shape with Figs. 9 and 10, but with larger differences. The absolute
maximum difference of 11.91 cm was computed between the classical and the combined
formulae.

While the classical integral formula suffers from the planar approximation of the geoid,
the Martinec and Vańıc̆ek (1994b) integral formula and Sjöberg and Nahavandchi (1999)
combined formula use the spherical model. The spherical harmonic representation of
the PITE only includes the long-wavelength constituents in this study due to the use of
M ′=360, while the other integral formulae only include the short-wavelength information
(due to the use of the integration area). Sjöberg and Nahavandchi (1999) combined formula
include both short and long-wavelength information, contrary to Martinec and Vańıc̆ek
(1994b) integral formula which only include the local contributions. But results from
these two formulae are in good agreement with each other in comparison with the other
methods. Sjöberg and Nahavandchi (1999) computed the differences between these two
formulae in the test area in Sweden with the maximum elevation of 1051 m. They obtained
the absolute maximum difference of 0.71 cm between these two formulae. It should be
noted, however, that the integral formula of Martinec and Vańıc̆ek (1994b) was integrated
up to 20◦ from computation points using the GETECH 2.5′×2.5′ DTM (GETECH 1995b).
The global 30′ × 30′ DTM (GETECH 1995a) was used outside the 20◦ cap. This again
justifies the belief that they might be some parts of the long-wavelength constituents,
which are missing in the integral formula of Martinec and Vańıc̆ek (1994b) ( due to the
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choice of integration area).
To see how the different formulae for the DTE and the PITE work in different test

areas, a flatter test area in Iran was chosen. The heights in this area vary from 625 to
1537 m. The same computations as above were carried out in this second test area. The
results of comparisons between different formulae were the same as in the first test area.
The differences were smaller and smoother, however, that shows the expected dependence
of the topographical effects on elevations.

3.4 Comparisons

In order to obtain further insight into how the methods differ, and which model is better
suited to describe the ”height reference surface” of the national height reference system, 7
GPS-leveling stations were used as an external source to obtain the geoid heights. These
stations belong to National Cartographic Center of Iran. The elevations of the GPS
stations vary from 1431 to 1798 m. The accuracy of the ellipsoidal heights (h) of these
stations is of the order of few centimetres. Iran is using the orthometric height system.
The GPS-leveling geoidal heights in these 7 stations are computed with the well known
formula

N
.= h−H. (21)

This formula is, however, only valid if orthometric height refers to the geoid where the
”height reference surface” normally does not coincide with the geoid, which is the case in
this study too. For the numerical investigation of different methods of handling the effects
of topographic masses, the gravimetric geoid heights at these 7 GPS-leveling stations
are also computed. Thereafter, the gravimetric results were compared with the GPS-
leveling geoid heights. This will help to understand which method of topographic effects
computations is better suited to describe the used ”height reference surface”.

For computing the gravimetric geoid heights, Stokes’s formula in Eq. (1) with the
least-squares modification of Stokes’s kernel is used according to Nahavandchi and Sjöberg
(2001a). Short-wavelength part of the geoid height was computed through Stokes’s integra-
tion up to 6◦ from computation points and long-to-medium-wavelength part was computed
from the global gravity geopotential model EGM96 (Lemoine et al. 1997). It is important
to notice, however, that the EGM96 is based on free-air gravity anomalies and the used
model here is Helmert’s second method of condensation. The differences are normally
very small but they might have larger values in mountainous areas. The terrestrial gravity
anomalies in Stokes’s integral are in 110′′ × 160′′ geographical cells and taken from Na-
tional Cartographic Center of Iran. The interested readers are referred to Nahavandchi
(1998b) and Nahavandchi and Sjöberg (2001a) for the procedures and formulae used in
the modification of Stokes’s formula.
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To compute the gravimetric geoid height with the Stokes-Helmert scheme for geoid
determination [see Eq. (1)], Helmert’s anomaly at the geoid (∆gH

∗
) is needed. The

Moritz’s (1980) DTE formula already includes the effect of the downward continuation to
the geoid, while Vańıc̆ek and Kleusberg’s (1987), Martinec and Vańıc̆ek’s (1994a), spherical
harmonic approach, and Nahavandchi’s (2000) DTE formulae refer to a point at the ground
level [see Eq. (2)]. Therefore, a downward continuation procedure must be implemented
in these methods to reduce the ∆gH from topography to the geoid resulting in ∆gH

∗
. The

Poisson integral formula with the same procedure carried out in Vańıc̆ek et al. (1996),
Nahavandchi (1998c) and Nahavandchi and Sjöberg (2001b) was used.

The modified Poisson formula can be written as (see e.g. Vańıc̆ek et al. 1996; Naha-
vandchi and Sjöberg 2001b)

∆gH =
R

4π

∫∫

σ0

∆gH
∗
KM (r, ψ,R,ψ0)dσ + δgT + ∆gHM (22)

where δgT is the truncation error, ∆gHM are the low-degree spherical harmonics of the
gravity anomaly, KM(r, ψ, R, ψ0) is the modified Poisson kernel and σ0 denotes the inte-
gration domain within a spherical cap of radius ψ0. The truncation error is minimized
following the Molodenskij technique to reduce potential errors coming from the employed
global gravity model. The minimization is carried out in the sense of minimizing the upper
bound of the absolute value of the truncation error by subtracting from Poisson’s kernel an
appropriately selected linear combination of spherical harmonic functions taken to degree
and order M . The interested reader is referred to Vańıc̆ek et al. (1996) and Nahavand-
chi and Sjöberg (2001b) for the complete explanation of the above-mentioned modified
Poisson formula to derive unknown ∆gH

∗
from given the Helmert gravity anomaly ∆gH .

Different formulae to determine the topographic effects and downward continuation
problem are catagorized in the following 5 procedures. The classical integral formulae
of Moritz with the DTE in Eq. (3) (which also includes the downward continuation
procedure) and the PITE in Eq. (14) is the first method. Second, the classical integral
formulae of Vańıc̆ek and Kleusberg with the DTE in Eq. (4) and downward continuation
procedure in Eq. (22) and the PITE in Eq. (14) are used. Thereafter, the spherical
harmonic approach was employed with the DTE in Eq. (5) and the downward continuation
procedure in Eq. (22) and the PITE in Eq. (15). The integral formulae of Martinec and
Vańıc̆ek with the DTE in Eq. (11) and the downward continuation procedure in Eq.
(22) and the PITE in Eq. (17) is the fourth method. Finally, the combined formulae
with the DTE in Eq. (13) and the downward continuation procedure of Eq. (22) and
the PITE in Eq. (19) are used. Thereafter, the gravimetric geoid heights (with different
correction procedures mentioned above) are computed at 7 GPS-leveling stations and the
statistics of differences between the gravimetric and the GPS-leveling geoid heights are
shown in Table 3. Table 3 shows that the gravimetric geoid heights agree better with the
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Table 3: Statistics of the differences between gravimetric and 7 GPS-leveling stations’
geoid heights with different procedures of handling the topographic corrections. Units in
metres.

Min Max Mean SD

Classical Moritz formulae -0.191 1.301 0.560 0.462
Classical Vańıc̆ek and Kleusberg formulae -0.202 1.292 0.583 0.421

Spherical harmonic approaches of Nahavandchi and Sjöberg -0.238 1.322 0.622 0.518
Integral formulae of Martinec and Vańıc̆ek -0.118 1.221 0.562 0.381

Combined formulae of Nahavandchi and Sjöberg -0.131 1.118 0.521 0.322

GPS-leveling geoid heights when the integral formulae of Martinec and Vańıc̆ek and the
combined formulae of Nahavandchi and Sjöberg are used, compared to the other methods,
with the latter formula as the best. This justifies the belief that the combined formulae
used in this study for handling the effects of topographic masses include all wavelengths
and are better suited to describe the height reference surfaces like the geoid.

In addition, a fitting process of the gravimetric and GPS-leveling geoid was conducted.
The geoid change ∆N can be written in geographical coordinates as (Heiskanen and Moritz
1967):

NGrav −NGPS = ∆N = cosφ cosλ∆X + cosφ sinλ∆Y + sinφ∆Z + kR (23)

where φ and λ are the geographical coordinates, ∆X , ∆Y , ∆Z are the three translations
and k is the scale factor. Equation (23) represents a very useful regression formula,
which can be used for fitting a regional gravimetric geoid to the GPS-leveling stations.
Table 4 shows the statistics of the differences, after fitting, between gravimetric and GPS-
leveling geoid. Results of Table 4 shows that, after regression, the gravimetric geoid heights
computed with the topographic effects of the combined formulae of Nahavandchi and
Sjöberg still improve the fit of the gravimetric geoid to GPS-leveling stations, significantly.
The standard deviation of the fit after regression with this method is computed as ±10.1
cm compared to ±12.3 cm with the integral formulae of Martinec and Vańıc̆ek, the second
best method among the other methods. It should be mentioned, however, that these
computations should be carried out in test areas with more available GPS-leveling stations.

4 Discussion and conclusions

The DTE and the PITE with different methods and different approximations are dis-
cussed. Classical integral formulae use the planar approximation of the geoid while the
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Table 4: Statistics of the differences between GPS-leveling and gravimetric geoid heights
with different procedures of handling the topographic corrections after fitting to 7 GPS
stations. Units in metres.

Min Max Mean SD

Classical Moritz formulae -0.514 0.435 0.000 0.192
Classical Vańıc̆ek and Kleusberg formulae -0.483 0.466 0.000 0.181

Spherical harmonic approaches of Nahavandchi and Sjöberg -0.557 0.429 0.000 0.238
Integral formulae of Martinec and Vańıc̆ek -0.361 0.281 0.000 0.123

Combined formulae of Nahavandchi and Sjöberg -0.252 0.312 0.000 0.101

recent formulae use the spherical approximation of the geoid. The spherical harmonic rep-
resentation of the topographic effects only include the long-wavelength information with
available maximum degree M ′=360 used in this study, while pure integral formulae only
include the local contributions depending on the integration area. The combined formulae
of the PITE and the DTE derived by Sjöberg and Nahavandchi (1999) and Nahavandchi
(2000), respectively, include all the significant information. As the important part of the
topographic effects are the local contributions, the results of these formulae are in good
agreement with the Martinec and Vańıc̆ek (1994a, b) integral formulae, which also use the
spherical model of the geoid, but do not include the whole long-wavelength contributions.
It can be stated that the combined formulae model better the long-wavelength constituents
with respect to the procedure described in Martinec and Vańıc̆ek (1994a, b). It should be
noted that the above-mentioned results should also be tested in other test areas.

The aim of this study was to show the differences between different procedures of
handling the effect of topographic masses in precise geoid determination. It is shown that
significant differences between different methods exist, which were expected. It is also con-
cluded that the effects of distant topographic masses can not be neglected in precise geoid
computations. It means that the long-wavelength contributions of these effects, which
are included in the combined formulae, represent better the reality. To justify this belief,
geoidal heights were computed applying different topographic effects. The gravimetric
geoid heights were then compared with the 7 GPS-leveling geoid heights. The results of
these comparisons prove the belief that the gravimetric geoid height computations cor-
rected for topographic effects with the combined formulae work better with GPS-leveling
data. The standard deviation of the fit (after the regression procedures) is determined to
be equal to ±10.1 cm for the topographic effects of combined formulae, while it is equal to
±19.2 cm for the classical method. Finally, the use of the combined formulae of DTE [Eq.
(13)] and PITE [ Eq. (19)] are suggested for a precise geoid determination. The results
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of gravimetric geoid height comparisons with GPS-leveling height data over Sweden also
recommended the use of the combined formulae (Nahavandchi and Sjöberg 2001a, b).
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