

Colorado Detailed Geoid COLgeo2019

Hussein A. Abd-Elmotaal

Minia University, Civil Engineering Department, Minia 61111, Egypt hussein.abdelmotaal@gmail.com

Reduce

In the framework of the window remove-restore technique (Abd-Elmotaal and Kühtreiber, 1999, 2003), the reduced gravity anomalies Δg_{red} for the point data on land $(35^{\circ} \le \phi \le 40^{\circ}; -110^{\circ} \le \lambda \le -102^{\circ})$ can be computed by

$$\Delta g_{red} = \Delta g_F - \Delta g_{Tlwin} - \Delta g_{ElGEN-6C4} \Big|_{n=2}^{2190} + \Delta g_{wincoff} \Big|_{n=2}^{2190} . \tag{1}$$

where Δg_{Tlwin} is the contribution of the topographic-isostatic masses within the fixed data window ($33^{\circ} \leq \phi \leq 42^{\circ}$; $-112^{\circ} \leq \lambda \leq -100^{\circ}$), $\Delta g_{\text{EIGEN-6C4}}$ is the contribution of the global reference model and $\Delta g_{\text{wincoff}}$ is the contribution of the dimensionless harmonic coefficients of the topographic-isostatic masses for the same fixed data window. The dimensionless harmonic coefficients of the topographic-isostatic masses for the same fixed data window for the ultra high degree ($N_{\text{max}} = 2190$) have been computed using the rigorous expressions given first by Abd-Elmotaal and Kühtreiber (2015) and improved numerically by Abd-Elmotaal and Kühtreiber (2019).

Interpolate

The Kriging interpolation technique with zero Nugget effect takes place for the data window $(35^{\circ} \le \phi \le 40^{\circ}; -110^{\circ} \le \lambda \le -102^{\circ})$ on a 1' × 1' grid yielding the interpolated gridded reduced anomalies Δg_{red}^{G} .

Compute

The contribution of the reduced anomalies Δg_{red}^{G} to the geoid $N_{\Delta g}$ is determined using Stokes integral employing Meissl (1971) modified kernel, i.e.,

$$N_{\Delta g} = \frac{R}{4\pi\gamma} \iint_{\sigma} \Delta g_{red}^{G} S^{ME}(\psi) d\sigma , \qquad (4)$$

where

$$S^{ME}(\psi) = \begin{cases} S(\psi) - S(\psi_{o}) & \text{for } 0 < \psi \le \psi_{o} \\ 0 & \text{for } \psi > \psi_{o} \end{cases} , \tag{5}$$

where ψ_o is the cap size. A value of ψ_o between 0.3° to 4° have been tested to choose the best cap size ψ_o that gives the best fitting to the GPS/leveling geoid. This test reveals that $\psi_o = 0.5^\circ$ is the best cap size value for Colorado geoid determination.

Restore

The full geoid restore expression for the window remove-restore technique reads

$$N = N_{\Delta g} + N_{Tlwin} + \zeta_{EIGEN-6C4} \Big|_{n=2}^{2190} - \zeta_{wincoff} \Big|_{n=2}^{2190} + (N - \zeta) , \qquad (6)$$

where N_{Tlwin} is the contribution of the topographic-isostatic masses for the data window and both $\zeta_{ElGEN-6C4}$ and $\zeta_{wincoff}$ gives the contribution of the used global reference field and the dimensionless harmonic coefficients of the topographic-isostatic masses for the fixed data window, respectively.

The term $(N-\zeta)$ is computed using the following expression

$$(N - \zeta) = \frac{H}{\overline{\gamma}} \left(\Delta g_{EIGEN-6C4} \Big|_{n=2}^{2190} - \Delta g_{wincoff} \Big|_{n=2}^{2190} \right), \tag{7}$$

where the height H is given by the COLH19M05 (5 \times 5') DTM.

Results and Deliverables

The geoid of Colorado COLgeo2019 is illustrated in Fig. 1. The values of the geoid range between -27.31 m and -13.12 m with an average of -19.99 m. The geoid solution is delivered on a 1' × 1' grid covering the full window (35° $\leq \phi \leq 40^{\circ}$; -110° $\leq \lambda \leq$ -102°). The geoid file name is COLgeo2019.dat. A high-resolution geoid image is provided in file COLgeo2019.emf.

The geoid values are computed at 223 stations for the purpose of geopotential computation. These values are provided in the file: gsvs17_IGS08_2017p4_geo_pot.xls.

Fig. 1: The COLgeo2019 Colorado geoid model. Units in [m].

Comparison versus GPS/levelling geoid

The computed geoid COLgeo2019 has been compared versus 509 GPS stations with known orthometric height. The results are given in file: N_COLgeo2019-N_GPS.xls. The statistics of the differences between the COLgeo2019 geoid model and the GPS/levelling geoid are illustrated in Table 1.

Table 1: Statistics of the difference between COLgeo2019 model and the GPS/levelling geoid

	$N-N_{GPS}$ [cm]
Number of values	509
Minimum	-17.4
Maximum	15.2
Range	32.6
Mean	0.00
Standard deviation	5.2

References

- Abd-Elmotaal, H. and Kühtreiber, N. (1999) Improving the Geoid Accuracy by Adapting the Reference Field. *Physics and Chemistry of the Earth*, **24** (1), 53–59, DOI: 10.1016/S1464-1895(98)00010-6.
- Abd-Elmotaal, H. and Kühtreiber, N. (2003) Geoid Determination Using Adapted Reference Field, Seismic Moho Depths and Variable Density Contrast. *Journal of Geodesy*, **77**, 77–85, DOI: 10.1007/s00190-002-0300-7.
- Abd-Elmotaal, H. A. and Kühtreiber, N. (2015) On the Computation of the Ultra-High Harmonic Coefficients of the Topographic-Isostatic Masses within the Data Window. *Geophysical Research Abstracts*, **17**, EGU General Assembly, 2015, 355, URL: https://meetingorganizer.copernicus.org/EGU2015/EGU2015-355.pdf.
- Abd-Elmotaal, H. and Kühtreiber, N. (2019) Alternative Approach for the Determination of the Austrian Gravimetric Geoid. *Geophysical Research Abstracts*, **21**, EGU General Assembly, 2019, 547, URL: https://meetingorganizer.copernicus.org/EGU2019/EGU2019-547.pdf.
- Meissl, P. (1971) A Study of Covariance Functions Related to the Earth's Disturbing Potential. *Department of Geodetic Science, The Ohio State University, Columbus, Ohio*, **151**.