AN UPDATED GEOID MODEL FOR AFRICA

Charles L Merry

University of Cape Town

* AFRICAN GEOID:

- Preliminary model developed in 2003by African Geoid Working Group
- Update data sets:
 - EGM96

- → Eigen GL04C
- GLOBE DEM -> SRTM DEM
- Change model for $N \zeta$ term

***** MATHEMATICAL MODELS:

Geoid from Height anomaly:
$$N = \zeta + \frac{\overline{g} - \overline{\gamma}}{\overline{\gamma}}H$$

Height anomaly:
$$\zeta = \zeta_L + \zeta_S + \zeta_{G1} + \zeta_I$$

 $\zeta_{\rm L}$: long wavelength, from harmonic coefficients

 ζ_{S} : short wavelength, from reduced anomalies

 ζ_{G1} : G_1 contribution

 $\zeta_{\rm I}$: inner zone contribution

* 2D CONVOLUTION:

$$\zeta_{S} = \frac{R.\Delta\phi.\Delta\lambda}{4\pi\gamma} \left[S(\psi) * \Delta g_{r} \cos \phi \right]$$

$$\zeta_{G1} = \frac{R.\Delta\phi.\Delta\lambda}{4\pi\gamma} \left[S(\psi) * G_1 \cos \phi \right]$$

$$G_{1} = \frac{\Delta \phi. \Delta \lambda}{2\pi} \left[(h.\Delta g_{f}) * \frac{1}{\ell^{3}} - h. \left(\Delta g_{f} * \frac{1}{\ell^{3}} \right) \right]$$

DATA:

- Eigen GL04C (degree 120)
- $\Delta g_{\rm B} \Rightarrow 5' \text{ grid}$
- gridded $\Delta g_B + \overline{DEM}$ $\overline{\downarrow}$ Δg_f

DATA (2):

- Marine Δg_f : KMS02 satellite altimetry
- Data gaps: Eigen GL04C
- DEM: SRTM 30"

* RESULTS:

Residual Quasi-Geoid (including inner zone)

RMS: 88cm

Max: +7.9m

* **RESULTS (2)**:

• G₁ Contribution

• RMS: 12cm

Max: +87cm

RESULTS (3):

• N - ζ

RMS: 9cm

Min: -182cm

* RMS CONTRIBUTIONS:

* RESULT:

Updated African Geoid

* COMPARISONS: AGP2007 – AGP2003

 Underlying geopotential model: GL04C – EGM96 (to degree 120)

RMS: 49cm

Max: +4.4m

* COMPARISONS: AGP2007 – AGP2003

Difference inG₁ Contribution

RMS: 6cm

Max: + 46cm

* COMPARISONS: AGP2007 – AGP2003

• Difference in N - ζ

RMS: 4cm

Min: - 112cm

* COMPARISON: AGP2007 - AGP2003 Geoid Model

• RMS: 67cm

Max: + 7.6m

* COMPARISON WITH GPS/LEVELLING:

Northern Algeria:

AGP2007 σ: 26cm

GL04C(360) σ : 39cm

Western South Africa:

AGP2007 σ : 17cm

GL04C(360) σ : 28cm

* RMS FIT TO GPS/LEVELLING (mean removed):

CONCLUSIONS:

- Successful combination of Eigen GL04C and local Δg to determine new model of the African geoid AGP2007, using 2D convolution, and including G_1 term
- Refinements include new geopotential model, new DEM and new calculation of N ζ
- Comparison with GPS/levelling shows improvement over AGP2003 in western South Africa and northern Algeria
- Greatest weakness is lack of gravity data in large parts of Africa (also insufficient GPS/levelling data for validation)

