CONTENTS

A COMPENDIUM OF PHYSICAL GEODESY
(A. Albertella, F. Sansò)
1. Basic definitions and properties
 1.1 Gravitation and gravity potential
 1.2 Gauss and Green's formulas
 1.3 Normal potential. anomalous potential, Laplace equation in ellipsoidal
 and spherical coordinates
2 Observables and observation equations
 2.1 Introductory remarks
 2.2 Observation equations for (hp, Hp); (hp, Wp); (hp, gp); (Wp, gp);
 (Φp, Αp, φp, λp) all in linearized form
 2.3 Spherical approximation
3 Spherical harmonics and global models
 3.1 Generating function. Legendre polynomials. associated Legendre functions
 spherical harmonics and their basic functional properties
 3.2 Boundary value problems for the sphere
 3.3 The construction of global models of anomalous potential
4 Local solutions
 4.1 The localization of Stokes formula; spherical and planar approximation
 4.2 The residual terrain correction
 4.3 Minimum norm approximations (deterministic collocation)
 4.4 Minimum estimation error approximations (least squares collocation)
 4.5 The restore procedure

DEVELOPMENT AND APPLICATIONS OF GEOPOTENTIAL MODELS
(N.K. Pavlis)
1. Introduction
2. Estimation techniques and strategies
 2.1. Preliminary considerations
 2.2. Solution strategies
 2.3. The Satellite- only Model
 2.4. The Comprehensive Low-Degree Combination Solution
 2.4.1. The surface gravity (Low-Degree) Normal Equations
 2.4.2. The “Direct” Altimetry Normal Equations
 2.5. The High-Degree Combination Solution
 2.5.1. The Numerical Quadrature (NQ) Technique
 2.5.2. The block-diagonal (BD) Least Squares Adjustment Techniques
 2.6. Summary
3. Data Requirement and Availability
 3.1 Elevation Data
 3.2 Terrestrial Gravity Anomaly Data
 3.3 Altimetry-Derived 30’ Mean Gravity Anomalies
 3.4 Topographic/Isostatic 30’ Mean Anomaly Estimates
 3.5 The Merged 30’ Mean Anomaly File
4. Results and Accuracy Assessment
5. Summary
GLOBAL GRAVITATIONAL MODELING
AN OVERVIEW CONSIDERING CURRENT AND FUTURE DEDICATED GRAVITY MAPPING MISSIONS
(N.K. Pavlis)
1. Introduction
 1.1 Local and Regional Gravimetric Models
 1.2 Global Versus Local Gravimetric Models – Similarities and Differences
2. GGM Representation and Estimation
3. The New Satellite Missions
4. Beyond the Satellite Data Sensitivity
5. Outlook

GLOBAL MODELS OF THE GRAVITY FIELD OF HIGH AND ULTRA-HIGH SOLUTIONS
(G. Wenzel)
1. Introduction
2. Computation of the disturbing potential, gravity disturbances, gravity anomalies, and vertical deflections
3. Maximum degree, spatial resolution and omissions errors
4. Computation of fully normalized Legendre functions for ultra-high degree
5. Numerical techniques for effective computation of grids
6. Available models
7. Ultra-high degree geopotential models GPM98A, B and C to degree 1800
 7.1 Computational procedure for the GPM98 models
 7.2 Data compilation for the GPM98 geopotential models
 7.3 Computation of the GPM98 geopotential models
 7.4 Validation of the GPM98 models
 7.5 Conclusions
8. Exercises

TERRAIN EFFECTS IN GEOID COMPUTATIONS
(R. Forsberg)
1. Introduction
2. Basics of the gravity field description and terrain reductions
 2.1 Geoid, quasigeoid and harmonic continuation
 2.2 Density anomalies and conventional gravity terrain reductions
 2.3 Residual density anomalies and RTM gravity anomalies
 2.4 General remove-restore terrain reductions
 2.5 Direct or indirect use of terrain reductions
 2.6 Terrain reductions and Molodensky’s theory
 2.7 Helmert condensation
 2.8 Reference fields in rugged topography
3. The practical computations of terrain effects
 3.1 Terrain effect integration by prisms
 3.2 Terrain effects by Fourier transformation methods
Reference
Appendix 1: Overview of the GRAVSOFT programs
Appendix 2: Terrain program instructions
SOME NOTES ON “DRAPING” OF GEOID TO GPS AND SOME NEWS GRAVSOFT MODULES … AND EXERCISES!
(R. Forsberg)
1. Draping of gravimetric geoid to provide a “final” geoid for GPS use
2. Some new modules in GRAVSOFT

NEW MEXICO GRAVSOFT geoid exersizes to “Terrain effects…”
(R. Forsberg)
Exercise 1: Prepare terrain grids
Exercise 2: Make terrain effects by TC prism integration
Exercise 3: Terrain effects by Fourier methods
Exercise 4: Geoid restore effects by FFT
Exercise 5: Now use the computed terrain effects to make a gravimetric geoid
Exercise 6: Converting a quasigeoid to a geoid
Exercise 7: Fitting of a geoid to GPS control

GEOID DETERMINATION BY 3D LEAST SQUARES COLLOCATION
(C.C. Tscherning)
1. Introduction
2. Theory
3. The remove-restore method
4. Covariance function estimation and representation
5. Conversion from geoid heights to height anomalies
6. LSC geoid determination from residual data
7. Conclusion

GEOID DETERMINATION BY FFT TECHNIQUES
(M. Sideris)
1 INTRODUCTION - STOKES' INTEGRAL AND ITS EVALUATION 1
1.1 Stokes' Boundary Value Problem
1.2 Geoid Undulations and Terrain Reductions
1.3 Practical Evaluation of Stokes' Integral
 1.3.1 The remove-restore technique
 1.3.2 Formulas for the GM-contributions
 1.3.3 Formulas for the \(\Delta g \)-contribution
 1.3.4 Formulas for the direct and inverse terrain contribution
1.4 The Need for Spectral Techniques
2 THE FOURIER TRANSFORM AND ITS PROPERTIES
2.1 Basic Definitions
 2.1.1 Sinusoids
 2.1.2 Fourier series
2.2 The Continuous Fourier Transform and its Properties
 2.2.1 Definition of the continuous Fourier transform
 2.2.2 The impulse function
 2.2.3 The rectangle and the sinc functions
 2.2.4 Interpretation of the Fourier transform and Fourier series
 2.2.5 Properties of the CFT
 2.2.6 Convolution and correlation
2.3 The Discrete Fourier Transform
 2.3.1 From the continuous to the discrete Fourier transform – Aliasing and leakage
 2.3.2 Discrete convolution and correlation - Circular convolution and
correlation

2.3.3 Correlation, covariance and power spectral density functions
2.3.4 The DFT in computers
2.3.5 The fast Fourier transform
2.4 The Two-dimensional Discrete Fourier Transform

3 GEOID UNDULATIONS BY FFT

3.1 Planar Approximation of Stokes' Integral
 3.1.1 Point gravity anomalies as input
 3.1.2 Mean gravity anomalies as input
 3.1.3 Analytical versus discrete kernel spectrum
 3.1.4 Effects of planar approximation - Spherical corrections

3.2 Spherical Form of Stokes' Integral
 3.2.1 Approximated spherical kernel
 3.2.2 Approximated spherical kernel with many bands
 3.2.3 Rigorous spherical kernel

3.3 Elimination of Edge Effects and Circular Convolution
3.4 FFT-evaluation of Terrain Effects
 3.4.1 Formulas for terrain effects
 3.4.2 Point heights as input
 3.4.3 Mean heights as input
 3.4.4 Analytical versus discrete kernel spectrum
 3.4.5 Terrain corrections by 3D FFT

4 OPTIMAL SPECTRAL GEOID DETERMINATION

4.1 Error Propagation
4.2 Efficient DFT for Real Functions
 4.2.1 DFT of two real functions via a single FFT
 4.2.2 Simultaneous convolution of two real functions with the same function
4.3 Use of the Fast Hartley Transform
 4.3.1 The discrete Hartley transform and its properties
 4.3.2 Definition of the 1D Discrete Hartley Transform
 4.3.3 Definition of the 2D Discrete Hartley Transform
 4.3.4 Properties of the Discrete Hartley Transform
4.4 Relationship between the DHT and the DFT
 4.4.1 Computation of the 1D DFT via the 1D DHT
 4.4.2 Computation of the 2D DFT via the 2D DHT
 4.4.3 Advantages unique to the DHT

5 CONCLUDING REMARKS

6 REFERENCES

ADDENDUM – Matching the Gravimetric Geoid to the GPS-levelling Undulations
1 Introduction – Why Combine h, H and N?
2 Semi-Automated Parametric Model Testing Procedure
 2.1 Classic empirical approach
 2.2 Cross-validation
 2.3 Measures of goodness of fit
 2.4 Testing parameter significance
 2.4.1 Backward elimination
 2.4.2 Forward selection
 2.4.3 Stepwise procedure
3 Examples
 3.1 Switzerland test network
 3.2 Canadian test network
4 Summary
References